Growth of a Perturbation in an Axial Flow Compressor

1979 ◽  
Vol 101 (1) ◽  
pp. 87-94 ◽  
Author(s):  
J. Fabri

A time-dependent linearized approach is used to predict the amplification or the decay of an initial perturbation in the multistage axial compressor of high hub-to-tip ratio. This analysis shows that for unstalled flow regimes the change in perturbation amplitude remains limited. The linearized theory remains valid until the stall limit. It is shown that, near this limit, peripheral propagation of an induced perturbation takes place at an angular velocity close to one-half of rotor angular velocity. However in most cases this perturbation has a limited amplitude.

Author(s):  
Andrew Gill ◽  
Theodor W. von Backström ◽  
Thomas M. Harms ◽  
Dwain Dunn

It has been shown in previous investigations that when all combinations of both positive and negative direction of rotation and flow direction are allowed in operating a multistage axial flow compressor, the operating point may be in any of the four quadrants of the pressure rise versus flow characteristic. The present paper is the first discussion of the flow field of all possible modes of operation of an axial flow compressor. During the present study interstage time dependent hot film velocity measurements and five hole pneumatic probe measurements were combined with steady and time dependent CFD solutions to investigate the flow fields in the three-stage axial compressor. Results are presented in terms of mean-line velocity triangles, mean stream surface plots, mid-span radial velocity contours right through the compressor, rotor-downstream radial distributions of axial and tangential velocity, stator-downstream axial velocity contours and mid-span entropy contours through the compressor. Main flow features are pointed out and discussed. The study was instigated in an effort to understand possible accident scenarios in a three-shaft closed cycle nuclear powered helium gas turbine.


2013 ◽  
Vol 136 (6) ◽  
Author(s):  
Andrew Gill ◽  
Theodor W. Von Backström ◽  
Thomas M. Harms

It has been shown in previous investigations that when all combinations of both positive and negative direction of rotation and flow direction are allowed in operating a multistage axial flow compressor, the operating point may be in any of the four quadrants of the pressure rise versus flow characteristic. The present paper is the first discussion of the flow field of all possible modes of operation of an axial flow compressor. During the present study interstage time dependent hot film velocity measurements and five hole pneumatic probe measurements were combined with steady and time dependent CFD solutions to investigate the flow fields in the three-stage axial compressor. Results are presented in terms of mean-line velocity triangles, mean stream surface plots, midspan radial velocity contours right through the compressor, rotor-downstream radial distributions of axial and tangential velocity, stator-downstream axial velocity contours and midspan entropy contours through the compressor. Main flow features are pointed out and discussed. The study was instigated in an effort to understand possible accident scenarios in a three-shaft closed cycle nuclear powered helium gas turbine.


1976 ◽  
Author(s):  
L. E. Brown

Stage performance characteristics provide a powerful analytic tool for experimentally matching the stages and blade rows of an axial-flow compressor, while the variable stage compressor component test rig provides a most powerful experimental tool for developing compressors. This paper describes: Why and how the stage characteristics “normalized” to correct them for changes of stator setting angles, how these normalized characteristics can be fully defined for every stage; and how these characteristic can point the way to a well-matched configuration of setting angles. In addition, it proposes methods for distinguishing between the stall of rotors and stators and for normalizing the characteristics of stages with variable-setting rotor blade rows.


2012 ◽  
Vol 532-533 ◽  
pp. 474-478
Author(s):  
Wei Hua Cheng ◽  
Mian Chang Li ◽  
Chuan Peng Li

This paper conducts numerical simulation to a 15-stage civil axial flow compressor and obtains its main parameters distribution and performance curve by a full three-dimensional viscid flow computation software. The computation result indicates that, the developed axial flow compressor meets the anticipated design requirements, and satisfies the customers’ indicators. Under the designed compression ratio, the difference between the maximum air supply quantity in summer and the minimum air supply quantity in winter is 22%. By comparing the operating conditions and data analysis, obtained the change trend of axial velocity, static pressure and temperature, and Ma, and discovered that, under opening of 48° and outlet back pressure of 550KPa, flow separation occurred on the section of machine set close to hud, which indicated that operating condition was close to surging condition.


Author(s):  
P. V. Ramakrishna ◽  
M. Govardhan

There are a number of performance indices for a turbomachine on the basis of which its strength is evaluated. In the case of axial compressors, pressure ratio, efficiency and stall margin are few such indices which are of major concern in the design phase as well as in the evaluation of performance of the machine. In the process of improving the blade design, 3D blade stacking, where the aerofoil sections constituting the blade are moved in relation to the flow. Tilting the blade sections to the flow direction (blade sweep) would increase the operating range of an axial compressor due to modifications in the pressure and velocity fields on the suction surface. On the other hand, blade tip gap, though finite, has great influence on the performance of a turbomachine. The present work investigates the combined effect of these two factors on various flow characteristics in a low speed axial flow compressor. The objective of the present paper is thereby confined to study the collective effects of sweep and tip clearance without attempting to suggest an outright new design. In the present numerical work, the performance of Tip Chordline Sweeping (TCS) and Axial Sweeping (AXS) of low speed axial compressor rotor blades are studied. For this, 15 computational domains were modeled for five rotor sweep configurations and three different clearance levels for each rotor. Through the results, 20°AXS rotor is found to be distinctive among all the rotors with highest pressure rise, higher operating range and less tip clearance loss characteristics. TCS rotors produced improved total pressure rise at the low flow coefficients when the tip gap is increased. Hence there is a chance that an “optimum” tip gap exists for the TCS rotors in terms of total pressure coefficient and operating range, while AXS rotors are at their best with the minimum possible clearance.


2004 ◽  
Vol 126 (4) ◽  
pp. 677-679 ◽  
Author(s):  
J. H. Horlock

A simple thermo-fluid-dynamic analysis is presented for the ultimate steady flow in a repeating stage of an axial-flow compressor.


Author(s):  
A. Gill ◽  
T. W. von Backström ◽  
T. M. Harms

This article describes an experimental investigation of the flow structures occurring in an axial flow compressor during second quadrant operation for reversed rotor rotation in the incompressible flow regime. In second quadrant operation, the flow direction is reversed, but the pressure is lower at the compressor inlet than at the outlet. The compressor thus acts as an axial flow turbine. A three stage axial flow compressor, with a mass flow rate of 2.7 kg/s and a pressure ratio of 1.022 was investigated. The design rotor tip Mach number is 0.2. Three operational points within the second quadrant were investigated, at flow coefficients of −0.482, −0.553 and −0.843. A five hole conical probe and a 50 micron diameter inclined hot film anemometer were used in this investigation. Radial traverses downstream of rotor rows and a time-dependent area traverse downstream of the first stage stator were performed. Three-dimensional time-dependent numerical Navier-Stokes solutions using the non-linear harmonic approximation for single blade passages in each blade row for each of the cases are compared with experimental work. The compressor has already been show to be capable of attaining relatively high turbine efficiency (76%) when operating in this mode. Examination of the flow field shows that little to no flow separation occurs on the rotor or stator blades. The wakes of all blades are found to be thin and sharp, and the area between wakes is large and approximately uniform. Numerical results agree relatively well with experimental results.


Author(s):  
Ambrish Singh ◽  
Nand Kumar Singh

An industrial axial compressor has to meet a wide range of operation requirements. These machines have to run continuously for four to five years before going for overhaul. Hence, overall high level of efficiency may be slightly relaxed to meet this requirement. This requires axial flow compressor design to be more conservative and flexible to accommodate changes required for process industry through modern design & development approaches. This paper deals with finding of optimum flow path configuration that will allow a successful detailed design to follow. The effect of various parameters such as hub to tip ratio, proper selection of design rpm, reactions, work coefficient & flow coefficient has been investigated and selected for optimal performance of the machine. Last stage of the compressor is selected as radial stage with the advantage of reduction in axial length and to provide radial outlet, which is more suitable outlet configuration. Meanline design and streamline analysis for each configuration is determined to find out good operating range (stall-free operation) before starting the detailed design.


Author(s):  
F. Leboeuf ◽  
F. Bario ◽  
G. Boris ◽  
K. D. Papailiou

Detailed time-mean measurements have been realized on a transonic axial flow compressor. Flow quantities in the secondary flow regions have been obtained. The purpose of this paper is to present some essential features which drive the secondary following development in axial compressor among others, the strong influence of secondary vortex motion on the energy transfer between the flow and the blading is displayed. Also, we study the effect of tip clearance and axial distance between blade row. A secondary flow model is used for comparisons with theoretical computations. Very good comparisons have been obtained which show the validity of the theoretical model, in particular, the decomposition of the secondary flow into a viscous part and a vortical part, using an inviscid flow as a basis.


Sign in / Sign up

Export Citation Format

Share Document