Flow Fields in an Axial Flow Compressor During Four-Quadrant Operation

2013 ◽  
Vol 136 (6) ◽  
Author(s):  
Andrew Gill ◽  
Theodor W. Von Backström ◽  
Thomas M. Harms

It has been shown in previous investigations that when all combinations of both positive and negative direction of rotation and flow direction are allowed in operating a multistage axial flow compressor, the operating point may be in any of the four quadrants of the pressure rise versus flow characteristic. The present paper is the first discussion of the flow field of all possible modes of operation of an axial flow compressor. During the present study interstage time dependent hot film velocity measurements and five hole pneumatic probe measurements were combined with steady and time dependent CFD solutions to investigate the flow fields in the three-stage axial compressor. Results are presented in terms of mean-line velocity triangles, mean stream surface plots, midspan radial velocity contours right through the compressor, rotor-downstream radial distributions of axial and tangential velocity, stator-downstream axial velocity contours and midspan entropy contours through the compressor. Main flow features are pointed out and discussed. The study was instigated in an effort to understand possible accident scenarios in a three-shaft closed cycle nuclear powered helium gas turbine.

Author(s):  
Andrew Gill ◽  
Theodor W. von Backström ◽  
Thomas M. Harms ◽  
Dwain Dunn

It has been shown in previous investigations that when all combinations of both positive and negative direction of rotation and flow direction are allowed in operating a multistage axial flow compressor, the operating point may be in any of the four quadrants of the pressure rise versus flow characteristic. The present paper is the first discussion of the flow field of all possible modes of operation of an axial flow compressor. During the present study interstage time dependent hot film velocity measurements and five hole pneumatic probe measurements were combined with steady and time dependent CFD solutions to investigate the flow fields in the three-stage axial compressor. Results are presented in terms of mean-line velocity triangles, mean stream surface plots, mid-span radial velocity contours right through the compressor, rotor-downstream radial distributions of axial and tangential velocity, stator-downstream axial velocity contours and mid-span entropy contours through the compressor. Main flow features are pointed out and discussed. The study was instigated in an effort to understand possible accident scenarios in a three-shaft closed cycle nuclear powered helium gas turbine.


2011 ◽  
Vol 2011 (0) ◽  
pp. _J051054-1-_J051054-5
Author(s):  
Hiroaki KIKUTA ◽  
Kazutoyo YAMADA ◽  
Satoshi Gunjishima ◽  
Goki OKADA ◽  
Yasunori HARA ◽  
...  

1979 ◽  
Vol 101 (1) ◽  
pp. 87-94 ◽  
Author(s):  
J. Fabri

A time-dependent linearized approach is used to predict the amplification or the decay of an initial perturbation in the multistage axial compressor of high hub-to-tip ratio. This analysis shows that for unstalled flow regimes the change in perturbation amplitude remains limited. The linearized theory remains valid until the stall limit. It is shown that, near this limit, peripheral propagation of an induced perturbation takes place at an angular velocity close to one-half of rotor angular velocity. However in most cases this perturbation has a limited amplitude.


Author(s):  
P. V. Ramakrishna ◽  
M. Govardhan

There are a number of performance indices for a turbomachine on the basis of which its strength is evaluated. In the case of axial compressors, pressure ratio, efficiency and stall margin are few such indices which are of major concern in the design phase as well as in the evaluation of performance of the machine. In the process of improving the blade design, 3D blade stacking, where the aerofoil sections constituting the blade are moved in relation to the flow. Tilting the blade sections to the flow direction (blade sweep) would increase the operating range of an axial compressor due to modifications in the pressure and velocity fields on the suction surface. On the other hand, blade tip gap, though finite, has great influence on the performance of a turbomachine. The present work investigates the combined effect of these two factors on various flow characteristics in a low speed axial flow compressor. The objective of the present paper is thereby confined to study the collective effects of sweep and tip clearance without attempting to suggest an outright new design. In the present numerical work, the performance of Tip Chordline Sweeping (TCS) and Axial Sweeping (AXS) of low speed axial compressor rotor blades are studied. For this, 15 computational domains were modeled for five rotor sweep configurations and three different clearance levels for each rotor. Through the results, 20°AXS rotor is found to be distinctive among all the rotors with highest pressure rise, higher operating range and less tip clearance loss characteristics. TCS rotors produced improved total pressure rise at the low flow coefficients when the tip gap is increased. Hence there is a chance that an “optimum” tip gap exists for the TCS rotors in terms of total pressure coefficient and operating range, while AXS rotors are at their best with the minimum possible clearance.


1986 ◽  
Vol 108 (1) ◽  
pp. 22-31 ◽  
Author(s):  
B. Lakshminarayana ◽  
N. Sitaram ◽  
J. Zhang

The blade-to-blade variation of relative stagnation pressure losses in the tip region inside the rotor of a single-stage, axial-flow compressor is presented and interpreted in this paper. The losses are measured at two flow coefficients (one at the design point and the other at the near peak pressure rise point) to discern the effect of blade loading on the end-wall losses. The tip clearance losses are found to increase with an increase in the pressure rise coefficient. The losses away from the tip region and near the hub regions are measured downstream. The losses are integrated and interpreted in this paper.


Author(s):  
A. Gill ◽  
T. W. von Backström ◽  
T. M. Harms

This article describes an experimental investigation of the flow structures occurring in an axial flow compressor during second quadrant operation for reversed rotor rotation in the incompressible flow regime. In second quadrant operation, the flow direction is reversed, but the pressure is lower at the compressor inlet than at the outlet. The compressor thus acts as an axial flow turbine. A three stage axial flow compressor, with a mass flow rate of 2.7 kg/s and a pressure ratio of 1.022 was investigated. The design rotor tip Mach number is 0.2. Three operational points within the second quadrant were investigated, at flow coefficients of −0.482, −0.553 and −0.843. A five hole conical probe and a 50 micron diameter inclined hot film anemometer were used in this investigation. Radial traverses downstream of rotor rows and a time-dependent area traverse downstream of the first stage stator were performed. Three-dimensional time-dependent numerical Navier-Stokes solutions using the non-linear harmonic approximation for single blade passages in each blade row for each of the cases are compared with experimental work. The compressor has already been show to be capable of attaining relatively high turbine efficiency (76%) when operating in this mode. Examination of the flow field shows that little to no flow separation occurs on the rotor or stator blades. The wakes of all blades are found to be thin and sharp, and the area between wakes is large and approximately uniform. Numerical results agree relatively well with experimental results.


Author(s):  
A. Gill ◽  
T. W. von Backstro¨m ◽  
T. M. Harms

This article describes an experimental investigation of the flow structures occurring in a three-stage axial flow compressor during fourth quadrant operation in the incompressible flow regime. In fourth quadrant operation, the flow coefficient exceeds the design value to such a degree that the pressure difference between the compressor inlet and outlet becomes negative, and the compressor acts as a badly designed turbine. The pressure rise characteristic curve thus extends into the fourth quadrant of the compressor map. A three stage axial flow compressor, with a mass flow rate of 2.7 kg/s and a pressure ratio of 1.022 was investigated. The design rotor tip Mach number is 0.2. Three operational points within the fourth quadrant were investigated, at flow coefficients of 0.665, 0.747 and 1.024. A five hole conical probe and a 50 μm diameter inclined hot film anemometer were used in this investigation. Radial traverses downstream of rotor rows and a time-dependent area traverse downstream of the first stage stator were performed. Three-dimensional steady-state and time-dependent numerical Navier-Stokes solutions for single blade passages in each blade row for each of the cases are compared with experimental work. Large wakes were observed downstream of all stator rows, as a result of significant flow separation on stator blades. The area fraction of the flow passage affected by the wakes increases as the flow coefficient increases. Flow through rotor blade-passages is heavily affected by the blade position relative to upstream stator wakes. Due to the effect of the stator wakes on downstream blading, time-dependent solutions using the nonlinear harmonic approximation were found to agree better with experimental results than steady-state solutions using mixing planes between blade rows.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6143
Author(s):  
Xiaoxiong Wu ◽  
Bo Liu ◽  
Botao Zhang ◽  
Xiaochen Mao

Numerical simulations have been performed to study the effect of the circumferential single-grooved casing treatment (CT) at multiple locations on the tip-flow stability and the corresponding control mechanism at three tip-clearance-size (TCS) schemes in a transonic axial flow compressor rotor. The results show that the CT is more efficient when its groove is located from 10% to 40% tip axial chord, and G2 (located at near 20% tip axial chord) is the best CT scheme in terms of stall-margin improvement for the three TCS schemes. For effective CTs, the tip-leakage-flow (TLF) intensity, entropy generation and tip-flow blockage are reduced, which makes the interface between TLF and mainstream move downstream. A quantitative analysis of the relative inlet flow angle indicates that the reduction of flow incidence angle is not necessary to improve the flow stability for this transonic rotor. The control mechanism may be different for different TCS schemes due to the distinction of the stall inception process. For a better application of CT, the blade tip profile should be further modified by using an optimization method to adjust the shock position and strength during the design of a more efficient CT.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Jichao Li ◽  
Juan Du ◽  
Mingzhen Li ◽  
Feng Lin ◽  
Hongwu Zhang ◽  
...  

The effects of water ingestion on the performance of an axial flow compressor are experimentally studied with and without endwall treatment. The background to the work is derived from the assessment of airworthiness for an aero-engine. The stability-enhancing effects with endwall treatments under rain ingestion are not previously known. Moreover, all the endwall treatments are designed under dry air conditions in the compressor. Water ingestion at 3% and 5% relative to the design mass flow proposed in the airworthiness standard are applied to initially investigate the effects on the performance under smooth casing (SC). Results show that the water ingestions are mainly located near the casing wall after they move through the rotor blade row. The pressure rise coefficient increases, efficiency declines, and torque increases under the proposed water ingestion. The increase of the inlet water increases the thickness of the water film downstream the rotor blade row and aggravates the adverse effects on the performances. Subsequently, three endwall treatments, namely circumferential grooves, axial slots, and hybrid slots–grooves, are tested with and without water ingestion. Compared with no water ingestion, the circumferential grooves basically have no resistance to the water ingestion. The axial slots best prevent the drop of the pressure rise coefficient induced by water ingestion, and hybrid slots–grooves are the second-best place owing to the contribution of the front axial slots. Therefore, the hybrid slots–grooves can not only extend the stall margin with less efficiency penalty compared with axial slots, but also prevent rain ingestion from worsening the compressor performance.


Sign in / Sign up

Export Citation Format

Share Document