scholarly journals Experimental Study and Theoretical Prediction of Secondary Flows in a Transonic Axial Flow Compressor

Author(s):  
F. Leboeuf ◽  
F. Bario ◽  
G. Boris ◽  
K. D. Papailiou

Detailed time-mean measurements have been realized on a transonic axial flow compressor. Flow quantities in the secondary flow regions have been obtained. The purpose of this paper is to present some essential features which drive the secondary following development in axial compressor among others, the strong influence of secondary vortex motion on the energy transfer between the flow and the blading is displayed. Also, we study the effect of tip clearance and axial distance between blade row. A secondary flow model is used for comparisons with theoretical computations. Very good comparisons have been obtained which show the validity of the theoretical model, in particular, the decomposition of the secondary flow into a viscous part and a vortical part, using an inviscid flow as a basis.

1984 ◽  
Author(s):  
Francis Leboeuf

A computational method for secondary flows in a compressor has been extended to treat stalled flows. An integral equation is used which simulates the inviscid flow at the wall, under the viscous flow influence. We present comparisons with experimental results for a 2D stalled boundary layer, and for the secondary flow in a highly loaded stator of an axial flow compressor.


Author(s):  
P. V. Ramakrishna ◽  
M. Govardhan

There are a number of performance indices for a turbomachine on the basis of which its strength is evaluated. In the case of axial compressors, pressure ratio, efficiency and stall margin are few such indices which are of major concern in the design phase as well as in the evaluation of performance of the machine. In the process of improving the blade design, 3D blade stacking, where the aerofoil sections constituting the blade are moved in relation to the flow. Tilting the blade sections to the flow direction (blade sweep) would increase the operating range of an axial compressor due to modifications in the pressure and velocity fields on the suction surface. On the other hand, blade tip gap, though finite, has great influence on the performance of a turbomachine. The present work investigates the combined effect of these two factors on various flow characteristics in a low speed axial flow compressor. The objective of the present paper is thereby confined to study the collective effects of sweep and tip clearance without attempting to suggest an outright new design. In the present numerical work, the performance of Tip Chordline Sweeping (TCS) and Axial Sweeping (AXS) of low speed axial compressor rotor blades are studied. For this, 15 computational domains were modeled for five rotor sweep configurations and three different clearance levels for each rotor. Through the results, 20°AXS rotor is found to be distinctive among all the rotors with highest pressure rise, higher operating range and less tip clearance loss characteristics. TCS rotors produced improved total pressure rise at the low flow coefficients when the tip gap is increased. Hence there is a chance that an “optimum” tip gap exists for the TCS rotors in terms of total pressure coefficient and operating range, while AXS rotors are at their best with the minimum possible clearance.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6143
Author(s):  
Xiaoxiong Wu ◽  
Bo Liu ◽  
Botao Zhang ◽  
Xiaochen Mao

Numerical simulations have been performed to study the effect of the circumferential single-grooved casing treatment (CT) at multiple locations on the tip-flow stability and the corresponding control mechanism at three tip-clearance-size (TCS) schemes in a transonic axial flow compressor rotor. The results show that the CT is more efficient when its groove is located from 10% to 40% tip axial chord, and G2 (located at near 20% tip axial chord) is the best CT scheme in terms of stall-margin improvement for the three TCS schemes. For effective CTs, the tip-leakage-flow (TLF) intensity, entropy generation and tip-flow blockage are reduced, which makes the interface between TLF and mainstream move downstream. A quantitative analysis of the relative inlet flow angle indicates that the reduction of flow incidence angle is not necessary to improve the flow stability for this transonic rotor. The control mechanism may be different for different TCS schemes due to the distinction of the stall inception process. For a better application of CT, the blade tip profile should be further modified by using an optimization method to adjust the shock position and strength during the design of a more efficient CT.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Xingen Lu ◽  
Wuli Chu ◽  
Junqiang Zhu ◽  
Yangfeng Zhang

In order to advance the understanding of the fundamental mechanisms of axial skewed slot casing treatment and their effects on the subsonic axial-flow compressor flow field, the coupled unsteady flow through a subsonic compressor rotor and the axial skewed slot was simulated with a state-of-the-art multiblock flow solver. The computational results were first compared with available measured data, that showed the numerical procedure calculates the overall effect of the axial skewed slot correctly. Then, the numerically obtained flow fields were interrogated to identify the physical mechanism responsible for improvement in stall margin of a modern subsonic axial-flow compressor rotor due to the discrete skewed slots. It was found that the axial skewed slot casing treatment can increase the stall margin of subsonic compressor by repositioning of the tip clearance flow trajectory further toward the trailing of the blade passage and retarding the movement of the incoming∕tip clearance flow interface toward the rotor leading edge plane.


1992 ◽  
Vol 114 (3) ◽  
pp. 675-685 ◽  
Author(s):  
A. Goto

The effect of difference in rotor tip clearance on the mean flow fields and unsteadiness and mixing across a stator blade row were investigated using hot-wire anemometry, pressure probes, flow visualization, and the ethylene tracer-gas technique on a single-stage axial flow compressor. The structure of the three-dimensional flow fields was discussed based on results of experiments using the 12-orientation single slanted hotwire technique and spectrum analysis of velocity fluctuation. High-pass filtered measurements of turbulence were also carried out in order to confirm small-scale velocity fluctuation, which is more realistically referred to as turbulence. The span-wise distribution of ethylene gas spreading, estimated by the measured small-scale velocity fluctuation at the rotor exit, agreed quite well with that which was experimentally measured. This fact suggests the significant role of turbulence, generated within the rotor, in the mixing process across the downstream stator. The value of the maximum mixing coefficient in the tip region was found to increase linearly as the tip clearance became enlarged, starting from the value at midspan.


2009 ◽  
Vol 2009 (0) ◽  
pp. 377-378 ◽  
Author(s):  
Hiroaki KIKUTA ◽  
Masato FURUKAWA ◽  
Satoshi GUNJISHIMA ◽  
Kenichiro IWAKIRI ◽  
Takuro KAMEDA

2006 ◽  
Vol 2006.2 (0) ◽  
pp. 149-150
Author(s):  
Sho BONKOHARA ◽  
Ken-ichiro IWAKIRI ◽  
Ryusuke OHTAGURO ◽  
Yasuhiro SHIBAMOTO ◽  
Masato FURUKAWA

Author(s):  
Xiaochen Mao ◽  
Bo Liu ◽  
Hang Zhao

This paper presents the studies performed to better understand the effects of increased tip clearance size on the unsteady flow behaviors and overall performance under the rotor–rotor interaction environment in a counter-rotating axial flow compressor. The investigation method is based on the three-dimensional unsteady Reynolds-averaged Navier–Stokes simulations. The results show that the intensified tip leakage flow in front rotor (R1) caused by the increased tip clearance size will lead to the growth of incoming incidence angle near the tip of the rear rotor (R2). The increasing of double leakage flow range plays a significant role in the sensitivity of the efficiency to tip clearance size and its extent is enlarged gradually with the increase of tip clearance size. As the tip clearance size is increased to 1.5τ (τ represents the designed tip clearance size) from 0.5τ, the results of the fast Fourier transform for the static pressure near blade tip show that two other new fluctuating frequency components appear due to the happening of tip leakage flow self-unsteadiness in R1 and R2, respectively. Additionally, the fluctuating strength near the tip in R2 is significantly increased. However, both the overall fluctuation in R1 caused by the potential effect from downstream and the oscillation in the hub corner on the pressure side of R2 are decreased obviously. The relative inflow angle tends to increase when the incoming wakes and tip leakage flow from R1 encounter the blade leading edge of R2, which leads to the result that the trajectory of tip leakage flow is shifted more upstream.


Author(s):  
Pritam Batabyal ◽  
Dilipkumar B. Alone ◽  
S. K. Maharana

This paper presents a numerical case study of various stepped tip clearances and their effect on the performance of a single stage transonic axial flow compressor, using commercially available software ANSYS FLUENT 14.0. A steady state, implicit, three dimensional, pressure based flow solver with SST k-Ω turbulence model has been selected for the numerical study. The stepped tip clearances have been compared with the baseline model of zero tip clearance at 70% and 100 % design speed. It has been observed that the compressor peak stage efficiency and maximum stage pressure ratio decreases as the tip clearances in the rear part are increased. The stall margin also increases with increase in tip clearance compared to the baseline model. An ‘optimum’ value of stepped tip clearance has been obtained giving peak stage compressor performance. The CFD results have been validated with the earlier published experimental data on the same compressor at 70% design speed.


Sign in / Sign up

Export Citation Format

Share Document