Linear Elastic Dipolar Plates

1968 ◽  
Vol 35 (3) ◽  
pp. 499-504
Author(s):  
E. L. Kyser

The linear dipolar field equations for an initially flat surface are presented and applied to an elastic isotropic surface. The equations separate into extensional and bending equations, and the extensional equations are discussed in detail. A general representation of the extensional solution is obtained, and is used to solve the stress-concentration problem of an infinite initially flat surface with a circular hole subjected to uniform radial tension at infinity. The stress-concentration factor differs from those obtained or implied by other theories (both classical and nonclassical), and the differences are discussed. Agreement with the classical result is obtained in one limiting case.

2011 ◽  
Vol 462-463 ◽  
pp. 663-667 ◽  
Author(s):  
Ruslizam Daud ◽  
Ahmad Kamal Ariffin ◽  
Shahrum Abdullah ◽  
Al Emran Ismail

This paper explores the initial potential of theory of critical distance (TCD) which offers essential fatigue failure prediction in engineering components. The intention is to find the most appropriate TCD approach for a case of multiple stress concentration features in future research. The TCD is based on critical distance from notch root and represents the extension of linear elastic fracture mechanics (LEFM) principles. The approach is allowing possibilities for fatigue limit prediction based on localized stress concentration, which are characterized by high stress gradients. Using the finite element analysis (FEA) results and some data from literature, TCD applications is illustrated by a case study on engineering components in different geometrical notch radius. Further applications of TCD to various kinds of engineering problems are discussed.


2005 ◽  
Vol 14 (03n04) ◽  
pp. 667-676 ◽  
Author(s):  
S. D. MAHARAJ ◽  
M. GOVENDER

In a recent approach in modeling a radiating relativistic star undergoing gravitational collapse the role of the Weyl stresses was emphasized. It is possible to generate a model which is physically reasonable by approximately solving the junction conditions at the boundary of the star. In this paper we demonstrate that it is possible to solve the Einstein field equations and the junction conditions exactly. This exact solution contains the Friedmann dust solution as a limiting case. We briefly consider the radiative transfer within the framework of extended irreversible thermodynamics and show that relaxational effects significantly alter the temperature profiles.


1995 ◽  
Vol 04 (02) ◽  
pp. 231-245 ◽  
Author(s):  
M.S.R. DELGATY ◽  
R.B. MANN

Macroscopic traversable wormhole solutions to Einstein’s field equations in (2+1) and (3+1) dimensions with a cosmological constant are investigated. Ensuring traversability severely constrains the material used to generate the wormhole’s spacetime curvature. Although the presence of a cosmological constant modifies to some extent the type of matter permitted [for example it is possible to have a positive energy density for the material threading the throat of the wormhole in (2+1) dimensions], the material must still be “exotic,” that is matter with a larger radial tension than total mass-energy density multiplied by c2. Two specific solutions are applied to the general cases and a partial stability analysis of a (2+1) dimensional solution is explored.


1985 ◽  
Vol 38 (4) ◽  
pp. 547 ◽  
Author(s):  
Yun-Kau Lau

In an attempt to reconcile the large number hypothesis (LNH) with Einstein's theory of gravitation, a tentative generalization of Einstein's field equations with time-dependent cosmological and gravitational constants is proposed. A cosmological model consistent with the LNH is deduced. The coupling formula of the cosmological constant with matter is found, and as a consequence, the time-dependent formulae of the cosmological constant and the mean matter density of the Universe at the present epoch are then found. Einstein's theory of gravitation, whether with a zero or nonzero cosmological constant, becomes a limiting case of the new generalized field equations after the early epoch.


Sign in / Sign up

Export Citation Format

Share Document