Low-Cycle Fatigue of Large-Diameter Bolts

1967 ◽  
Vol 89 (1) ◽  
pp. 53-60 ◽  
Author(s):  
A. L. Snow ◽  
B. F. Langer

New constant-deflection amplitude fatigue data on bolting materials are presented. The relationship of cyclic yield strength to static yield strength is examined. Several series of full-size stud fatigue tests are analyzed and compared to the basic failure curve to obtain experimental fatigue strength reduction factors for bolts and studs. The variation of fatigue strength reduction factors with thread root radius, stud size, thread taper, and other variables is noted. A new design fatigue curve for bolts is proposed which reflects the additional information available at the present time.

1962 ◽  
Vol 84 (3) ◽  
pp. 389-399 ◽  
Author(s):  
B. F. Langer

Methods are described for constructing a fatigue curve based on strain-fatigue data for use in pressure vessel design. When this curve is used, the same fatigue strength-reduction factor should be used for low-cycle as for high-cycle conditions. When evaluating the effects of combined mean and alternating stress, the fatigue strength-reduction factor should be applied to both the mean and the alternating component, but then account must be taken of the reduction in mean stress which can be produced by yielding. The complete fatigue evaluation of a pressure vessel can be a major task for the designer, but it can be omitted, or at least drastically reduced, if certain requirements can be met regarding design details, inspection, and magnitude of transients. Although the emphasis in this paper is on pressure vessel design, the same principles could be applied to any structure made of ductile metal and subjected to limited numbers of load cycles.


1999 ◽  
Vol 121 (1) ◽  
pp. 6-10 ◽  
Author(s):  
J. L. Hechmer ◽  
E. J. Kuhn

Based on the author’s hypothesis that nondestructive examination (NDE) has a major role in predicting the fatigue life of pressure vessels, a project was initiated to develop a defined relationship between NDE and fatigue strength reduction factors (FSRF). Even though a relationship should apply to both base metal and weld metal, the project was limited to weld metal because NDE for base metal is reasonably well established, whereas NDE for weld metal is more variable, depending on application. A matrix of FSRF was developed based on weld type (full penetration, partial penetration, and fillet weld) versus the NDE that is applied. The NDE methods that are included are radiographic testing (RT), ultrasonic testing (UT), magnetic particle testing (MT), dye penetrant testing (PT), and visual testing (VT). The first two methods (RT and UT) are volumetric examinations, and the remaining three are surface examinations. Seven combinations of volumetric and surface examinations were defined; thus, seven levels of FSRF are defined. Following the initial development of the project, a PVRC (Pressure Vessel Research Council) grant was obtained for the purpose of having a broad review. The report (Hechmer, 1998) has been accepted by PVRC. This paper presents the final matrix, the basis for the FSRF, and key definitions for accurate application of the FSRF matrix. A substantial amount of additional information is presented in the PVRC report (Hechmer, 1998).


1990 ◽  
Vol 112 (4) ◽  
pp. 333-339 ◽  
Author(s):  
J. M. Corum

New explicit weldment strength criteria in the form of creep and fatigue strength-reduction factors were recently introduced into the American Society of Mechanical Engineers Code Case N-47, which governs the design of elevated-temperature nuclear plant components in the United States. This paper provides some of the background and logic for these factors and their use, and it describes the results of a series of confirmatory creep-rupture and fatigue tests of simple welded structures. The structures (welded plates and tubes) were made of 316 stainless steel base metal and 16-8-2 weld filler metal. Overall, the results provide further substantiation of the validity of the strength-reduction factor approach for ensuring adequate life in elevated-temperature nuclear component weldments.


1970 ◽  
Vol 92 (1) ◽  
pp. 11-16 ◽  
Author(s):  
J. M. Barsom ◽  
S. T. Rolfe

Increasing use of high-strength steels in pressure-vessel design has resulted from emphasis on decreasing the weight of pressure vessels for certain applications. To demonstrate the suitability of a 140-ksi yield strength steel for use in unwelded pressure vessels, HY-140(T)—a quenched and tempered 5Ni-Cr-Mo-V steel—was fabricated and subjected to various burst and fatigue tests, as well as to various laboratory tests. In general, results of the investigation indicated very good tensile, Charpy, Nil Ductility Transition Temperature (NDT), low-cycle fatigue, and stress-corrosion properties of HY-140(T) steels, as well as very good burst tests results, in comparison with existing high-yield strength pressure-vessel steels. The results also indicate that the HY-140(T) steel should be an excellent material for its originally designed purpose, Naval hull applications.


Author(s):  
Arturs Kalnins

The paper distinguishes between FSRFs that are used for two different purposes. One is to serve as a guideline for an initial estimate of the fatigue strength of a welded joint. That is the purpose of the FSRFs that are given in the ASME B&PV Code and various accompanying documents. If that estimate renders the fatigue strength inadequate, an FSRF can be sought that is limited to the joint under consideration. The paper shows how such FSRFs can be determined from fatigue test data. In order to make it possible to read the allowable cycles from the same design fatigue curve as that used for the FSRFs of the guidelines, a Langer curve [defined by equation (2) in the paper] is used to curve fit the data. The appropriate FSRF is obtained by minimizing the standard deviation between this curve and the data. The procedure is illustrated for girth butt-welded pipes. The illustration shows that for the data used in the analysis, a constant FSRF is applicable to less than one million cycles but not to the high-cycle regime.


2000 ◽  
Vol 122 (3) ◽  
pp. 297-304 ◽  
Author(s):  
Carl E. Jaske

Fatigue-strength-reduction factors (FSRFs) are used in the design of pressure vessels and piping subjected to cyclic loading. This paper reviews the background and basis of FSRFs that are used in the ASME Boiler and Pressure Vessel Code, focusing on weld joints in Class 1 nuclear pressure vessels and piping. The ASME Code definition of FSRF is presented. Use of the stress concentration factor (SCF) and stress indices are discussed. The types of welds used in ASME Code construction are reviewed. The effects of joint configuration, welding process, cyclic plasticity, dissimilar metal joints, residual stress, post-weld heat treatment, the nondestructive inspection performed, and metallurgical factors are discussed. The current status of weld FSRFs, including their development and application, are presented. Typical fatigue data for weldments are presented and compared with the ASME Code fatigue curves and used to illustrate the development of FSRF values from experimental information. Finally, a generic procedure for determining FSRFs is proposed and future work is recommended. The five objectives of this study were as follows: 1) to clarify the current procedures for determining values of fatigue-strength-reduction factors (FSRFs); 2) to collect relevant published data on weld-joint FSRFs; 3) to interpret existing data on weld-joint FSRFs; 4) to facilitate the development of a future database of FSRFs for weld joints; and 5) to facilitate the development of a standard procedure for determining the values of FSRFs for weld joints. The main focus is on weld joints in Class 1 nuclear pressure vessels and piping. [S0094-9930(00)02703-7]


Author(s):  
Tatsumi Takehana ◽  
Takeru Sano ◽  
Susumu Terada ◽  
Hideo Kobayashi

2-1/4Cr-1Mo-V and 3Cr-1Mo-V steels have been used extensively as materials for elevated temperature and high-pressure hydro-processing reactors. These steels have both of high strength at elevated temperature and high resistance against elevated temperature hydrogen attack due to the addition of vanadium. The operating temperature of these reactors is between 800 and 900deg.F. The fatigue evaluations of these reactors per ASME Sec. VIII Div.2 and Div.3 can’t be performed in spite of demand for fatigue analysis because the temperature limit of design fatigue curve in ASME Sec. VIII Div.2 and Div.3 for carbon and low alloy steels is 700deg.F. Results of load and strain controlled fatigue tests conducted over the temperature range from room temperature to 932deg.F (500deg.C) are reported for 2-1/4Cr-1Mo-V and 3Cr-1Mo-V steels. These data were compared with data for 2-1/4Cr-1Mo steels available from the literatures. The fatigue strength for a 2-1/4Cr-1Mo-V steel in high cycle region is higher than that for 2-1/4Cr-1Mo steels and in low cycle region is lower. The fatigue strength for a 3Cr-1Mo-V steel is almost same as that for 2-1/4Cr-1Mo-V steels. Therefore an elevated temperature design fatigue curve for 2-1/4Cr-1Mo-V and 3Cr-1Mo-V steels is newly proposed. It is found from the case study that the different fatigue life can be predicted by using different mean stress correction procedure.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Masayuki Kamaya

According to Appendix L of the Boiler and Pressure Vessel Code Section XI, flaw tolerance assessment is performed using the stress intensity factor (SIF) even for low-cycle fatigue. On the other hand, in Section III, the fatigue damage is assessed using the design fatigue curve (DFC), which has been determined from strain-based fatigue tests. Namely, the stress is used for the flaw tolerance assessment. In order to resolve this inconsistency, in the present study, the strain intensity factor was used for crack growth prediction. First, it was shown that the strain range was the key parameter for predicting the fatigue life and crack growth. The crack growth rates correlated well with the strain intensity factor even for the low-cycle fatigue. Then, the strain intensity factor was applied to predict the crack growth under uniform and thermal cyclic loading conditions. The estimated fatigue life for the uniform cyclic loading condition agreed well with that obtained by the low-cycle fatigue tests, while the fatigue life estimated for the cyclic thermal loading condition was longer. It was shown that the inspection result of “no crack” can be reflected to determining the future inspection time by applying the flaw tolerance analysis. It was concluded that the flaw tolerance concept is applicable not only to the plant maintenance but also to plant design. The fatigue damage assessment using the design fatigue curve can be replaced with the crack growth prediction.


Sign in / Sign up

Export Citation Format

Share Document