Transient Thermal Stress and Associated Natural Frequency Variations in Circular Disk Elements

1967 ◽  
Vol 89 (2) ◽  
pp. 265-270 ◽  
Author(s):  
C. D. Mote

Most available thermal stress and associated natural frequency analyses of circular disk elements incorporate only the steady-state temperature distribution and intuitively assume that the transient is not significant. An analytical rule-of-thumb involving the calculation and test of a nondimensional number h1 is proposed for predicting conditions when the transient regime may be significantly more severe than the steady state. The number h1 = hb2/ksa, a modified Biot number, involves disk surface heat transfer, disk conductivity, and geometry.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Masoud Behzad ◽  
Benjamin Herrmann ◽  
Williams R. Calderón-Muñoz ◽  
José M. Cardemil ◽  
Rodrigo Barraza

Purpose Volumetric air receivers experience high thermal stress as a consequence of the intense radiation flux they are exposed to when used for heat and/or power generation. This study aims to propose a proper design that is required for the absorber and its holder to ensure efficient heat transfer between the fluid and solid phases and to avoid system failure due to thermal stress. Design/methodology/approach The design and modeling processes are applied to both the absorber and its holder. A multi-channel explicit geometry design and a discrete model is applied to the absorber to investigate the conjugate heat transfer and thermo-mechanical stress levels present in the steady-state condition. The discrete model is used to calibrate the initial state of the continuum model that is then used to investigate the transient operating states representing cloud-passing events. Findings The steady-state results constitute promising findings for operating the system at the desired airflow temperature of 700°C. In addition, we identified regions with high temperatures and high-stress values. Furthermore, the transient state model is capable of capturing the heat transfer and fluid dynamics phenomena, allowing the boundaries to be checked under normal operating conditions. Originality/value Thermal stress analysis of the absorber and the steady/transient-state thermal analysis of the absorber/holder were conducted. Steady-state heat transfer in the explicit model was used to calibrate the initial steady-state of the continuum model.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2603 ◽  
Author(s):  
Zhiyong Chen ◽  
Meifeng Guo ◽  
Rong Zhang ◽  
Bin Zhou ◽  
Qi Wei

The mechanical stress in silicon-on-glass MEMS structures and a stress isolation scheme were studied by analysis and experimentation. Double-ended tuning forks (DETFs) were used to measure the stress based on the stress-frequency conversion effect. Considering the coefficients of thermal expansion (CTEs) of silicon and glass and the temperature coefficient of the Young’s modulus of silicon, the sensitivity of the natural frequency to temperature change was analyzed. A stress isolation mechanism composed of annular isolators and a rigid frame is proposed to prevent the structure inside the frame from being subjected to thermal stresses. DETFs without and with one- or two-stage isolation frames with the orientations <110> and <100> were designed, the stress and natural frequency variations with temperature were simulated and measured. The experimental results show that in the temperature range of −50 °C to 85 °C, the stress varied from −18 MPa to 10 MPa in the orientation <110> and −11 MPa to 5 MPa in the orientation <100>. For the 1-stage isolated DETF of <110> orientation, the measured stress variation was only 0.082 MPa. The thermal stress can be mostly rejected by a stress isolation structure, which is applicable in the design of stress-sensitive MEMS sensors and actuators.


Author(s):  
P. Razelos ◽  
G. Michalakeas

This work is devoted to the study of the extended surfaces transient response. Although, the steady-state fin analysis has attracted considerable attention for a very long time, the interest in the transient response started in the last quarter of the past century. Several publications have appeared since, either analytical using the 1-D, conduction model, or experimental. Perusing the pertinent literature, however, we have observed that, in all previous published papers the authors treat the transient response of extended surfaces, or fins, like regular solids. However, fin endeavors rest on certain fundamental concepts, leading to some simplified assumptions, that we shall briefly discuss in the next section, which allows using the 1-D conduction model, and affect their steady-state operation. Therefore, the need for re-examining and revising the previously used methods becomes apparent. However, the authors are indebted to the pioneer workers on this topic that opened new avenues in the field of extended surface heat transfer. The aim of this work is to offer a different point of view to this problem, by introducing a new spatial coordinate system, and a new time scale. The solutions presented here, rest on the previously mentioned certain fundamental concepts developed recently. In the following we show step by step, how the existing pertinent equations and formulas of fins' transient response, are transformed to new simpler forms, expressed in terms of more appropriate dimensionless parameters, in accord with those appearing in recent publications. In the following, we confine to the analysis of constant thickness longitudinal and pin fins subject to specific1 boundary conditions. Each case is accompanied with an example that, for reasons of comparison are taken from the literature. We also discuss what is meant by "the time required for transient response to attain the steady-state condition."


1981 ◽  
Vol 103 (1) ◽  
pp. 36-41 ◽  
Author(s):  
E. J. Patula

With the higher rolling speeds used in modern cold-rolling mills, proper roll cooling has become a critical factor in avoiding problems of excessive roll spalling and poor thermal crowning. Poor thermal crowning of rolls can severely affect the shape and profile of sheet and strip products. To determine the influence of cooling practices on roll temperature, a mathematical model was developed that determines the two-dimensional (radial and circumferential) steady-state temperature distribution in a rotating roll subject to constant surface heat input over one portion of the circumference and convective cooling over another portion of the circumference. The model is analytical in nature, as opposed to a direct numerical simulation, which enables extensive parametric studies to be performed conveniently. The solution technique can be used to solve numerous problems involving any combination of surface boundary conditions that have, at most, a linear dependence with respect to the surface temperature. With the use of the principle of superposition, the present solution can be utilized to solve problems where various regions of the surface have constant heat fluxes. Results of the present analysis indicate that for normal cold-rolling situations during steady operation, the penetration of the effects of the surface heating and cooling that occur during every roll revolution is usually less than 4 percent of the radius. Furthermore, the bulk of the roll is at a uniform temperature that can be calculated quite accurately by neglecting all internal temperature gradients. The location of the cooling regions relative to the heat-input regions has little effect on the bulk roll temperature in this situation. This approximation would be useful for computing bulk roll temperature, which could be utilized in future models for determining thermal crowns, but would not be suited for determining accurate temperatures at the roll surface.


1961 ◽  
Vol 16 (4) ◽  
pp. 734-740 ◽  
Author(s):  
Eugene H. Wissler

A steady-state, mathematical model for the human heat transfer system has been developed. This model includes the following factors: a) the distribution of metabolic heat generation, b) conduction of heat in tissue, c) convection of heat by flowing blood, d) loss of heat by radiation, convection and evaporation at the surface, e) loss of heat through the respiratory tract, and f), countercurrent heat exchange between large arteries and veins. Computed results were compared with experimental results for the nude basal man and found to be satisfactory. Submitted on August 1, 1960


Sign in / Sign up

Export Citation Format

Share Document