Hot-Wire Measurements in a Radial Turbulent Jet

1966 ◽  
Vol 33 (2) ◽  
pp. 417-424 ◽  
Author(s):  
Gunnar Heskestad

Results from hot-wire measurements in an approximate radial turbulent incompressible jet of air are reported. In the range of measurements, the jet did not attain a self-preserving form. The mean velocity profiles at various radial locations were quite similar, while the mean-square turbulent velocity profiles were similar only away from the jet center plane, and the lateral intermittency distributions were highly dissimilar. Data for the energy balance of the turbulent motion were obtained at a convenient downstream location.

1965 ◽  
Vol 32 (4) ◽  
pp. 721-734 ◽  
Author(s):  
Gunnar Heskestad

Results from hot-wire measurements in a plane turbulent jet of air are reported. The jet was found to be approximately self-preserving sufficiently far downstream where measurements of intermittency and data for calculating the energy balance of the turbulent motion were obtained. Measurements were also made of the effect of the jet speed (assumed equivalent to a Reynolds-number effect for the low Mach numbers used) on the centerline development of turbulent intensity and the flatness factor of the velocity derivative at a fixed downstream centerline location.


1973 ◽  
Vol 95 (2) ◽  
pp. 167-173
Author(s):  
A. K. Stiffler ◽  
J. L. Shearer

A free turbulent jet is perturbed transverse to the flow direction by a sinusoidal pressure gradient near the nozzle exit. Velocities in the jet are determined by hot wire anemometer measurements. Moving effective mean velocity profiles are defined and reconstructed from the point-by-point stationary measurements of the mean velocity and of the harmonic content of the time varying signal. The effective velocity profiles are described by the Gaussian distribution function where the spread parameter decays as the cube of the product of the excitation frequency and the downstream location from the nozzle. These profile measurements and analysis of their characteristics lead to a better understanding of the factors determining the gain of a fluidic amplifier under conditions of high frequency operation.


1979 ◽  
Vol 193 (1) ◽  
pp. 341-347
Author(s):  
A. Goulas ◽  
R. C. Baker

Hot wire measurements at the exit of a small centrifugal compressor impeller are reported. Three different hot wire readings were obtained and stored on a magnetic tape for each point by gating the analogue hot wire signal with a pulse which indicated circumferential position. The combination of the three readings yielded the mean velocity and some Reynolds stresses at each point. The measurements show a ‘jet-wake’ profile towards the shroud and ‘isentropic’ flow near the hub.


1953 ◽  
Vol 20 (1) ◽  
pp. 109-114
Author(s):  
S. I. Pai

Abstract The Reynolds equations of motion of turbulent flow of incompressible fluid have been studied for turbulent flow between parallel plates. The number of these equations is finally reduced to two. One of these consists of mean velocity and correlation between transverse and longitudinal turbulent-velocity fluctuations u 1 ′ u 2 ′ ¯ only. The other consists of the mean pressure and transverse turbulent-velocity intensity. Some conclusions about the mean pressure distribution and turbulent fluctuations are drawn. These equations are applied to two special cases: One is Poiseuille flow in which both plates are at rest and the other is Couette flow in which one plate is at rest and the other is moving with constant velocity. The mean velocity distribution and the correlation u 1 ′ u 2 ′ ¯ can be expressed in a form of polynomial of the co-ordinate in the direction perpendicular to the plates, with the ratio of shearing stress on the plate to that of the corresponding laminar flow of the same maximum velocity as a parameter. These expressions hold true all the way across the plates, i.e., both the turbulent region and viscous layer including the laminar sublayer. These expressions for Poiseuille flow have been checked with experimental data of Laufer fairly well. It also shows that the logarithmic mean velocity distribution is not a rigorous solution of Reynolds equations.


Author(s):  
Redha Wahidi ◽  
Walid Chakroun ◽  
Sami Al-Fahad

Turbulent boundary layer flows over a flat plate with multiple transverse square grooves spaced 10 element widths apart were investigated. Mean velocity profiles, turbulence intensity profiles, and the distributions of the skin-friction coefficients (Cf) and the integral parameters are presented for two grooved walls. The two transverse square groove sizes investigated are 5mm and 2.5mm. Laser-Doppler Anemometer (LDA) was used for the mean velocity and turbulence intensity measurements. The skin-friction coefficient was determined from the gradient of the mean velocity profiles in the viscous sublayer. Distribution of Cf in the first grooved-wall case (5mm) shows that Cf overshoots downstream of the groove and then oscillates within the uncertainty range and never shows the expected undershoot in Cf. The same overshoot is seen in the second grooved-wall case (2.5mm), however, Cf continues to oscillate above the uncertainty range and never returns to the smooth-wall value. The mean velocity profiles clearly represent the behavior of Cf where a downward shift is seen in the Cf overshoot region and no upward shift is seen in these profiles. The results show that the smaller grooves exhibit larger effects on Cf, however, the boundary layer responses to these effects in a slower rate than to those of the larger grooves.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1087
Author(s):  
Eslam Reda Lotfy ◽  
Zambri Harun

The inertial sublayer comprises a considerable and critical portion of the turbulent atmospheric boundary layer. The mean windward velocity profile is described comprehensively by the Monin–Obukhov similarity theory, which is equivalent to the logarithmic law of the wall in the wind tunnel boundary layer. Similar logarithmic relations have been recently proposed to correlate turbulent velocity variances with height based on Townsend’s attached-eddy theory. The theory is particularly valid for high Reynolds-number flows, for example, atmospheric flow. However, the correlations have not been thoroughly examined, and a well-established model cannot be reached for all turbulent variances similar to the law of the wall of the mean-velocity. Moreover, the effect of atmospheric thermal condition on Townsend’s model has not been determined. In this research, we examined a dataset of free wind flow under a near-neutral range of atmospheric stability conditions. The results of the mean velocity reproduce the law of the wall with a slope of 2.45 and intercept of −13.5. The turbulent velocity variances were fitted by logarithmic profiles consistent with those in the literature. The windward and crosswind velocity variances obtained the average slopes of −1.3 and −1.7, respectively. The slopes and intercepts generally increased away from the neutral state. Meanwhile, the vertical velocity and temperature variances reached the ground-level values of 1.6 and 7.8, respectively, under the neutral condition. The authors expect this article to be a groundwork for a general model on the vertical profiles of turbulent statistics under all atmospheric stability conditions.


1976 ◽  
Vol 77 (3) ◽  
pp. 473-497 ◽  
Author(s):  
L. J. S. Bradbury

This paper describes an investigation into the response of both the pulsed-wire anemometer and the hot-wire anemometer in a highly turbulent flow. The first part of the paper is concerned with a theoretical study of some aspects of the response of these instruments in a highly turbulent flow. It is shown that, under normal operating conditions, the pulsed-wire anemometer should give mean velocity and longitudinal turbulent intensity estimates to an accuracy of better than 10% without any restriction on turbulence level. However, to attain this accuracy in measurements of turbulent intensities normal to the mean flow direction, there is a lower limit on the turbulent intensity of about 50%. An analysis is then carried out of the behaviour of the hot-wire anemometer in a highly turbulent flow. It is found that the large errors that are known to develop are very sensitive to the precise structure of the turbulence, so that even qualitative use of hot-wire data in such flows is not feasible. Some brief comments on the possibility of improving the accuracy of the hot-wire anemometer are then given.The second half of the paper describes some comparative measurements in the highly turbulent flow immediately downstream of a normal flat plate. It is shown that, although it is not possible to interpret the hot-wire results on their own, it is possible to calculate the hot-wire response with a surprising degree of accuracy using the results from the pulsed-wire anemometer. This provides a rather indirect but none the less welcome check on the accuracy of the pulsed-wire results, which, in this very highly turbulent flow, have a certain interest in their own right.


1982 ◽  
Vol 123 ◽  
pp. 523-535 ◽  
Author(s):  
J. W. Oler ◽  
V. W. Goldschmidt

The mean-velocity profiles and entrainment rates in the similarity region of a two-dimensional jet are generated by a simple superposition of Rankine vortices arranged to represent a vortex street. The spacings between the vortex centres, their two-dimensional offsets from the centreline, as well as the core radii and circulation strengths, are all governed by similarity relationships and based upon experimental data.Major details of the mean flow field such as the axial and lateral mean-velocity components and the magnitude of the Reynolds stress are properly determined by the model. The sign of the Reynolds stress is, however, not properly predicted.


1966 ◽  
Vol 25 (4) ◽  
pp. 719-735 ◽  
Author(s):  
H. Fiedler ◽  
M. R. Head

An improved version of Corrsin & Kistler's method has been used to measure intermittency in favourable and adverse pressure gradients, and the characteristic parameters of the intermittency have been related to the form parameterHof the mean velocity profiles.It is found that with adverse pressure gradients the centre of intermittency moves outward from the surface while the width of the intermittent zone decreases. The converse is true of favourable pressure gradients, and it seems likely that at sufficiently low values ofHthe flow over the full depth of the layer is only intermittently turbulent.A new method of intermittency measurement is presented which makes use of a photo-electric probe. Smoke is introduced into the boundary layer and illuminated by a narrow beam of parallel light normal to the surface. The photoelectric probe is focused on the illuminated region and a signal is generated when smoke passes through the focal point of the probe lens. Comparison of this signal with the output from a hot-wire at very nearly the same point shows the identity of smoke and turbulence distributions.


1988 ◽  
Vol 110 (2) ◽  
pp. 110-119 ◽  
Author(s):  
Y. T. Chew ◽  
R. L. Simpson

An explicit non-real time method of reducing triple sensor hot-wire anenometer data to obtain the three mean velocity components and six Reynolds stresses, as well as their turbulence spectra in three-dimensional flow is proposed. Equations which relate explicitly the mean velocity components and Reynolds stresses in laboratory coordinates to the mean and mean square sensors output voltages in three stages are derived. The method was verified satisfactorily by comparison with single sensor hot-wire anemometer measurements in a zero pressure gradient incompressible turbulent boundary layer flow. It is simple and requires much lesser computation time when compared to other implicit non-real time method.


Sign in / Sign up

Export Citation Format

Share Document