A Generalized Taylor Hypothesis With Application for High Reynolds Number Turbulent Shear Flows

1965 ◽  
Vol 32 (4) ◽  
pp. 735-739 ◽  
Author(s):  
Gunnar Heskestad

An approximate relation between the partial time and space derivatives of the velocity in a high Reynolds number turbulent shear flow (where high turbulence intensities prevail) is obtained. The relation is used to compute the mean-square space derirative from the mean-square time derivative, the latter being more accessible by hot-wire techniques.

2019 ◽  
Vol 20 (5) ◽  
pp. 285-299 ◽  
Author(s):  
El-Sayed Zanoun ◽  
Christoph Egbers ◽  
Ramis Örlü ◽  
Tommaso Fiorini ◽  
Gabriele Bellani ◽  
...  

2016 ◽  
Vol 788 ◽  
pp. 614-639 ◽  
Author(s):  
Sergio Pirozzoli ◽  
Matteo Bernardini ◽  
Paolo Orlandi

We study passive scalars in turbulent plane channels at computationally high Reynolds number, thus allowing us to observe previously unnoticed effects. The mean scalar profiles are found to obey a generalized logarithmic law which includes a linear correction term in the whole lower half-channel, and they follow a universal parabolic defect profile in the core region. This is consistent with recent findings regarding the mean velocity profiles in channel flow. The scalar variances also exhibit a near universal parabolic distribution in the core flow and hints of a sizeable log layer, unlike the velocity variances. The energy spectra highlight the formation of large scalar-bearing eddies with size proportional to the channel height which are caused by a local production excess over dissipation, and which are clearly visible in the flow visualizations. Close correspondence of the momentum and scalar eddies is observed, with the main difference being that the latter tend to form sharper gradients, which translates into higher scalar dissipation. Another notable Reynolds number effect is the decreased correlation of the passive scalar field with the vertical velocity field, which is traced to the reduced effectiveness of ejection events.


2015 ◽  
Vol 774 ◽  
pp. 324-341 ◽  
Author(s):  
J. C. Vassilicos ◽  
J.-P. Laval ◽  
J.-M. Foucaut ◽  
M. Stanislas

The spectral model of Perryet al. (J. Fluid Mech., vol. 165, 1986, pp. 163–199) predicts that the integral length scale varies very slowly with distance to the wall in the intermediate layer. The only way for the integral length scale’s variation to be more realistic while keeping with the Townsend–Perry attached eddy spectrum is to add a new wavenumber range to the model at wavenumbers smaller than that spectrum. This necessary addition can also account for the high-Reynolds-number outer peak of the turbulent kinetic energy in the intermediate layer. An analytic expression is obtained for this outer peak in agreement with extremely high-Reynolds-number data by Hultmarket al. (Phys. Rev. Lett., vol. 108, 2012, 094501;J. Fluid Mech., vol. 728, 2013, pp. 376–395). Townsend’s (The Structure of Turbulent Shear Flows, 1976, Cambridge University Press) production–dissipation balance and the finding of Dallaset al. (Phys. Rev. E, vol. 80, 2009, 046306) that, in the intermediate layer, the eddy turnover time scales with skin friction velocity and distance to the wall implies that the logarithmic derivative of the mean flow has an outer peak at the same location as the turbulent kinetic energy. This is seen in the data of Hultmarket al. (Phys. Rev. Lett., vol. 108, 2012, 094501;J. Fluid Mech., vol. 728, 2013, pp. 376–395). The same approach also predicts that the logarithmic derivative of the mean flow has a logarithmic decay at distances to the wall larger than the position of the outer peak. This qualitative prediction is also supported by the aforementioned data.


2015 ◽  
Vol 783 ◽  
pp. 166-190 ◽  
Author(s):  
Roeland de Kat ◽  
Bharathram Ganapathisubramani

Spatial turbulence spectra for high-Reynolds-number shear flows are usually obtained by mapping experimental frequency spectra into wavenumber space using Taylor’s hypothesis, but this is known to be less than ideal. In this paper, we propose a cross-spectral approach that allows us to determine the entire wavenumber–frequency spectrum using two-point measurements. The method uses cross-spectral phase differences between two points – equivalent to wave velocities – to reconstruct the wavenumber–frequency plane, which can then be integrated to obtain the spatial spectrum. We verify the technique on a particle image velocimetry (PIV) data set of a turbulent boundary layer. To show the potential influence of the different mappings, the transfer functions that we obtained from our PIV data are applied to hot-wire data at approximately the same Reynolds number. Comparison of the newly proposed technique with the classic approach based on Taylor’s hypothesis shows that – as expected – Taylor’s hypothesis holds for larger wavenumbers (small spatial scales), but there are significant differences for smaller wavenumbers (large spatial scales). In the range of Reynolds number examined in this study, double-peaked spectra in the outer region of a turbulent wall flow are thought to be the result of using Taylor’s hypothesis. This is consistent with previous studies that focused on examining the limitations of Taylor’s hypothesis (del Álamo & Jiménez, J. Fluid Mech., vol. 640, 2009, pp. 5–26). The newly proposed mapping method provides a data-driven approach to map frequency spectra into wavenumber spectra from two-point measurements and will allow the experimental exploration of spatial spectra in high-Reynolds-number turbulent shear flows.


2015 ◽  
Vol 81 (826) ◽  
pp. 15-00091-15-00091 ◽  
Author(s):  
Yuki WADA ◽  
Noriyuki FURUICHII ◽  
Yoshiya TERAO ◽  
Yoshiyuki TSUJI

Sign in / Sign up

Export Citation Format

Share Document