The Stability of an Elastic Rotor in Journal Bearings With Flexible, Damped Supports

1965 ◽  
Vol 32 (4) ◽  
pp. 911-920 ◽  
Author(s):  
Jorgen W. Lund

A theoretical analysis is presented investigating the stability (fractional frequency whirl, “oil whip”) of a symmetrical, flexible rotor supported in journal bearings. The bearings are mounted in flexible, damped supports. The analysis determines the rotor speed at which instability sets in as affected by rotor stiffness, the dynamic properties of the bearing film, and the flexibility and damping of the bearing supports. The analysis is based on the fact that the bearing can be represented by frequency-dependent spring and damping coefficients, and the method by which the coefficients are obtained is described with emphasis on the gas-lubricated bearing. The conclusions are: (a) Rotor and support flexibility by themselves lower the speed at onset of instability; (b) when the bearing support possesses damping in addition to flexibility, the speed at onset of instability can be raised significantly above the threshold speed of a rotor in rigidly mounted bearings. Numerical results are presented in the form of graphs for the plain cylindrical gas bearing.

1979 ◽  
Vol 101 (4) ◽  
pp. 451-457 ◽  
Author(s):  
Zbyszko Kazimierski ◽  
Krzysztof Jarzecki

Results of experimental investigations of the dynamic properties of elastic supports for gas bearings having the form of rubber O-rings are presented. Theoretical calculations of the stability threshold of an externally pressurized gas bearing system elastically supported by means of O-rings were performed. An experimental investigation of the stability threshold of this gas bearing system was made. Comparisons between theoretical and experimental results verify the theoretical model and illustrate the possibility of its application to design purposes.


Author(s):  
Chenhui Jia ◽  
Haijiang Zhang ◽  
Shijun Guo ◽  
Ming Qiu ◽  
Wensuo Ma ◽  
...  

According to the gas film force variation law, when the bearing axis is slightly displaced from the static equilibrium position, displacement and velocity disturbance relation expressions for the gas film force increment are constructed. Moreover, combined with the bearing rotor system motion equation, calculation model equations for the gas film stiffness and damping coefficients are established. The axial and radial vibration and velocity of the gas bearings during operation are collected. The instantaneous stiffness and damping coefficients of the gas film are calculated by the rolling iteration algorithm using MATLAB. The dynamic changes in the gas film stiffness and damping under different motion states are analyzed, and the mechanism of the gas film vortex and oscillation is studied. The results demonstrate the following: (1) When the gas bearing is running in the linear steady state in cycle 1, the dynamic pressure effect is enhanced and the stability is improved by increasing the eccentricity; when the gas supply pressure is increased, the static pressure effect is enhanced and the gas film vortex is reduced, but the oscillation is strengthened. (2) With the increase in rotational speed, the gas film vortex force gradually exceeds the gas film damping force, and the stability gradually worsens, causing a fluctuation in the gas film stiffness and damping, following which singularity occurs and a half-speed vortex is formed. Meanwhile, the gas film oscillation is intensified, and the rotor enters the nonlinear stable cycle 2 state operation. (3) As the fluctuation of the film force increases, the instantaneous stiffness and damping oscillation of the film intensifies, most of the stiffness and damping coefficients exhibit distortion, and the rotor operation will enter a chaotic or unstable state. Therefore, the gas bearing stiffness and damping variation characteristics can be used to study and predict the gas bearing operating state. Finally, measures for reducing the vortex and oscillation of the gas film and improving the stability of the gas bearing operation are proposed.


1979 ◽  
Vol 21 (5) ◽  
pp. 345-351 ◽  
Author(s):  
M. K. Ghosh ◽  
B. C. Majumdar ◽  
J. S. Rao

A theoretical analysis of the steady-state and dynamic characteristics of multi-recess hybrid oil journal bearings is presented. A perturbation theory for small vibrations is used to solve an incompressible, finite journal bearing with a time-dependent term. Load capacity, attitude angle, friction parameter, stiffness and damping coefficients are evaluated for a capillary-compensated bearing.


Author(s):  
Katsuhisa Fujita ◽  
Atsuhiko Shintani ◽  
Koji Yoshioka ◽  
Kouhei Okuno ◽  
Hiroaki Tanaka ◽  
...  

Recently, in many areas such as computers and information equipments etc., the fluid journal bearings are required to rotate at higher speed. To satisfy this requirement, the strictly stability analysis of the journal is indispensable. In this paper, we investigate the stability analysis of the dynamic behavior of the fluid plain journal bearing with an incompressible fluid considering the nonlinear terms of fluid forces. The stability analysis is examined by the numerical simulations on each model of a rigid rotor and a flexible rotor. The stable regions by nonlinear analysis are compared with the regions by classical linear analysis. Performing the nonlinear simulation analysis, it becomes clear that there is rather a stable region which amplitude does not grow up abruptly, and this phenomenon can not only be pointed out, but also is judged to be unstable by linear stable analysis. Finally, the experiment using actual bearings is performed and compared with the numerical results.


1977 ◽  
Vol 99 (4) ◽  
pp. 469-477 ◽  
Author(s):  
P. Bar-Yoseph ◽  
J. J. Blech

The stability of a flexible rotor, perfectly balanced, was investigated theoretically. The rotor is symmetrically supported by circumferentially fed journal bearings. Short and finite bearings were treated. Stability was checked for small and large disturbances. Two methods were employed to treat large disturbances: Direct integration and the slowly varying technique. The nonlinear prediction was tested concurrently with the prediction of the stability charts. It was observed that in certain cases stability can be obtained in the asymptotic and in the unstable regions. Instability was obtained for regions which presumably are asymptotically stable in the entire speed range.


1985 ◽  
Vol 107 (1) ◽  
pp. 116-121 ◽  
Author(s):  
Y. S. Chen ◽  
H. Y. Wu ◽  
P. L. Xie

An analysis and a numerical solution using finite difference method to predict the dynamic performance of multirecess hybrid-operating oil journal bearings are presented. The linearized stiffness and damping coefficients of a typical capillary-compensated bearing with four recesses are computed for various design parameters. The corresponding stiffness and the stability threshold of the bearing are then obtained, and the opposite influences of the hydrodynamic action on them are demonstrated. The effect of rotor flexibility on the onset of self-excited whirl is discussed, and a method is given to determine the stability threshold of a rotor-hybrid bearing system.


1995 ◽  
Vol 117 (3) ◽  
pp. 593-599 ◽  
Author(s):  
P. Arumugam ◽  
S. Swarnamani ◽  
B. S. Prabhu

The dynamic behavior of the rotating machinery supported by the hydrodynamic journal bearings is significantly influenced by the dynamic characteristics of the oil film. In the present work an efficient identification method is used to identify the stiffness and damping coefficients of the tilting pad and cylindrical journal bearings of a flexible rotor-bearing system. The method uses FRFs (Frequency Response Functions) obtained by the measurements and the finite element method. The accuracy and feasibility of the method were tested and demonstrated by theoretical simulation. The possible effects of oil-film inertia is also verified by the theoretical simulation. The method can be further extended to identify twelve linearized oil-film coefficients.


1988 ◽  
Vol 110 (1) ◽  
pp. 181-187 ◽  
Author(s):  
B. C. Majumdar ◽  
D. E. Brewe ◽  
M. M. Khonsari

This investigation deals with the stability characteristics of oil journal bearings, including the effect of elastic distortions in the bearing liner. Graphical results are presented for (1) steady-state load, (2) stiffness and damping coefficients, and (3) the stability. These results are given for various slenderness ratios, eccentricity ratios, and elasticity parameters. The lubricant is first assumed to be isoviscous. The analysis is then extended to the case of a pressure-dependent viscosity. It has been found that stability decreases with increase of the elasticity parameter of the bearing liner for heavily loaded bearings.


Sign in / Sign up

Export Citation Format

Share Document