Analysis of Power Spinning of Cones
The geometry of the cone, the roller, and the spinning operation are described mathematically. A shear type of deformation is postulated, based on experimental evidence. The displacement, velocity, strain rate, and stress fields are computed for “Mises’ material,” and hence with Mises’ stress-strain rate law. The power consumed in the operation is computed from the strain rate and stress fields. The expression for the power is in a form that can scarcely be solved analytically. A numerical solution is therefore employed and results are presented in graphical forms, where the power and tangential force are plotted for a variety of the process variables. The numerical solution is compared with actual power and force measurement in experimental tests and the agreement is reasonably good.