Analysis of Error Sensitivity of a System for Electrowetting Force Measurement

Author(s):  
Vivek Ramadoss ◽  
Nathan Crane

Electrowetting systems are commonly studied by measuring contact angle changes with applied voltage. However many applications such as digital droplet manipulation require information about the force applied to a drop to improve performance. This paper analyses a previously demonstrated method of measuring the electrowetting forces to estimate the sensitivity of force measurements to potential errors such as droplet evaporation, variation in volume, and alignment accuracy. The most significant force errors are introduced by uncertainty in droplet volume as by evaporation. However, analysis shows that this can be controlled by lowering the measurement tip to compensate for evaporation. Errors in tangential force due to alignment are shown to be small for alignment errors below 1°.

Author(s):  
KSENIA A. Batishcheva ◽  
ATLANT E. Nurpeiis

With an increase in the productivity of power equipment and the miniaturization of its components, the use of traditional thermal management systems becomes insufficient. There is a need to develop drip heat removal systems, based on phase transition effects. Cooling with small volumes of liquids is a promising technology for microfluidic devices or evaporation chambers, which are self-regulating systems isolated from the external environment. However, the heat removal during evaporation of droplets into a limited volume is a difficult task due to the temperature difference in the cooling device and the concentration of water vapor that is unsteady in time depending on the mass of the evaporated liquid. This paper presents the results of an experimental study of the distilled water microdrops’ (5-25 μl) evaporation on an aluminum alloy AMg6 with the temperatures of 298-353 K in an isolated chamber (70 × 70 × 30 mm3) in the presence of heat supply to its lower part. Based on the analysis of shadow images, the changes in the geometric dimensions of evaporating drops were established. They included the increase in the contact diameter, engagement of the contact line due to nano roughening and chemical composition inhomogeneous on the surface (90-95% of the total evaporation time) of the alloy and a decrease in the contact diameter. The surface temperature and droplet volume did not affect the sequence of changes in the geometric dimensions of the droplets. It was found that the droplet volume has a significant effect on the evaporation time at relatively low substrate temperatures. The results of the analysis of droplet evaporation rates and hygrometer readings have shown that reservoirs with salt solutions can be used in isolated chambers to control the concentration of water vapor. The water droplets evaporation time was determined. The analysis of the time dependences of the evaporation rate has revealed that upon the evaporation of droplets in an isolated chamber under the conditions of the present experiment, the air was not saturated with water vapor. The latter did not affect the evaporation rate.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Xiaohe Zhang ◽  
Bing Gu ◽  
Cheng-Wei Qiu

AbstractHighly sensitive force measurements of a single microscopic particle with femto-Newton sensitivity have remained elusive owing to the existence of fundamental thermal noise. Now, researchers have proposed an optically controlled hydrodynamic manipulation method, which can measure the weak force of a single microscopic particle with femto-Newton sensitivity.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Chenyang Wang ◽  
Xiao Wu ◽  
Pengfei Hao ◽  
Feng He ◽  
Xiwen Zhang

AbstractDroplets icing has important applications in real life. The icing process of droplets on microstructure is explored based on the MDPDE method in this study. Firstly, the correctness of the heat transfer model was verified by one-dimensional heat conduction simulation, and then the feasibility of the phase change model was verified by investigating the icing process of droplets. The influence of cold surface temperature, droplet volume and contact angle on freezing time of droplets was discussed, and it was found that the temperature of cold surfaces had a greater effect on freezing. We finally explored the influence of different microstructure surfaces on the icing of droplets, and results showed that the presence of microstructures greatly enhanced the anti-icing effect of the surface. In our research, the contact angle is a relatively large factor affecting the icing of droplets. In addition, it was discovered that the droplet had the strongest ability to delay freezing on the surface of triangle microstructures with a contact angle of 157.1°.


2020 ◽  
Vol 110 (01-02) ◽  
pp. 24-31
Author(s):  
Patrick Georgi ◽  
Ssrah Eschelbacher ◽  
Thomas Stehle ◽  
Hans-Christian Möhring

Die Prozessüberwachung spielt in der Zerspanung eine immer wichtiger werdende Rolle. So können zum Beispiel mittels Zerspankraftmessungen ökonomisch optimierte Parameter in Zerspanprozessen gefunden werden, die zu einer Verbesserung der Auslastung von Werkzeug und Maschine führen. Des Weiteren kann über die Zerspankraft auf den aktuellen Verschleißzustand der Werkzeuge im Prozess sowie auf die jeweils erreichbare Bearbeitungsgenauigkeit zurückgeschlossen werden. Für Zerspankraftmessungen gibt es eine Vielzahl an zur Verfügung stehenden Kraftmesssystemen; zum einen traditionelle Messtechnik auf Basis von Piezosensoren zur Kraftmessung und zum anderen Kraftmesstechnik auf der Basis von Dehnmessstreifen (DMS). Dieser Beitrag untersucht die Kraftaufnahme bei Fräs- und Bohrprozessen, bei denen beide Kraftmesssysteme simultan eingesetzt wurden.   Process monitoring plays an increasingly important role in machining. For example, through cutting force measurements, it is possible to find economically optimal parameters in the milling process, which lead to an improvement in the utilization of the tool and the machine. Furthermore, the cutting force can be used to deduce the state of wear of the tools in the process. There are varieties of available force measuring systems for this purpose; on the one hand, traditional measuring technology based on piezo sensors for force measurement and the other force measuring technology based on strain gauges (strain gauges). This article examines the force absorption in milling and drilling processes where both force-measuring systems were used simultaneously.


Author(s):  
Mercy Dicuangco ◽  
Susmita Dash ◽  
Justin A. Weibel ◽  
Suresh V. Garimella

The ability to control the size, shape, and location of particulate deposits is important in patterning, nanowire growth, sorting biological samples, and many other industrial and scientific applications. It is therefore of interest to understand the fundamentals of particle deposition via droplet evaporation. In the present study, we experimentally probe the assembly of particles on superhydrophobic surfaces by the evaporation of sessile water droplets containing suspended latex particles. Superhydrophobic surfaces are known to result in a significant decrease in the solid-liquid contact area of a droplet placed on such a substrate, thereby increasing the droplet contact angle and reducing the contact angle hysteresis. We conduct experiments on superhydrophobic surfaces of different geometric parameters that are maintained at different surface temperatures. The transient droplet shape and wetting behavior during evaporation are analyzed as a function of substrate temperature as well as surface morphology. During the evaporation process, the droplet exhibits a constant contact radius mode, a constant contact angle mode, or a mixed mode in which the contact angle and contact radius change simultaneously. The evaporation time of a droplet can be significantly reduced with substrate heating as compared to room-temperature evaporation. To describe the spatial distribution of the particle residues left on the surfaces, qualitative and quantitative evaluations of the deposits are presented. The results show that droplet evaporation on superhydrophobic surfaces, driven by mass diffusion under isothermal conditions or by substrate heating, suppresses particle deposition at the contact line. This preempts the so-called coffee-ring and allows active control of the location of particle deposition.


2007 ◽  
Vol 5 (2-3) ◽  
pp. 61-73 ◽  
Author(s):  
Katarzyna Hänni‐Ciunel ◽  
Gerhard H. Findenegg ◽  
Regine von Klitzing

Author(s):  
Dennis Gambarine ◽  
Arjen Koop ◽  
Gustavo Assi ◽  
Fabiano Rampazzo ◽  
Rodolfo T. Gonçalves

Abstract Studies about the flow around single column are the preliminary way to understand the behaviour of multi-column systems, e.g. semi-submersible platforms and floating offshore wind turbines. The presence of a rounded edge in a square column can include advantages in the constructive phases, on the other hand, can include difficulty in understanding the hydrodynamic behaviour. With this aim this paper presents a 2dof force measurement for a fixed single square column with and without rounded edges. The columns tested have the aspect ratio (H/L) equal to 1.5 representing the typical column height for multi-column platforms. The aim is to investigate the forces between a single square column with rounded edges and sharp edges in different flow incidence. For both edges a total of seven different current incidence angles were performed; 0, 7.5, 15, 22.5, 30, 37.5 and 45. Reynolds number used for the experiment is equal to 40,000. Additional tests were performed to evaluate a quantitative analysis of the uncertainties due to the repeatability and time length of the experiments. This procedure is necessary for the VV studies of CFD codes, and due to this, the database can be utilized for benchmarking.


Forests ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 982 ◽  
Author(s):  
Demiao Chu ◽  
Jun Mu ◽  
Stavros Avramidis ◽  
Sohrab Rahimi ◽  
Shengquan Liu ◽  
...  

In continuation of our former study on a novel combined treatment of nitrogen–phosphorus fire retardant and thermomechanical densification on wood, this study focuses on the dynamic wettability and the bonding strength. The contact angle was measured using the sessile drop method and the surface energy was calculated according to the van Oss method. Water surface penetrating and spreading is analyzed by both the Shi and Gardner model and the droplet volume changing model. The results reveal that the combined treatment increased the surface energy, especially the acid–base component. The contact angle declined and the water droplet spread more easily on the surface. Meanwhile, the rate of relative droplet volume decreased by 32.6% because the surface layer was densified and stabilized by the combined process. Additionally, the surface possesses the lowest roughness and highest abrasion resistance on the tangential section. Thus, the bonding strength of the combined treated poplar decreased by 29.7% compared to that of untreated poplar; however, it is still 53.3% higher than that of 220 °C heat-treated wood.


2013 ◽  
Vol 24 ◽  
pp. 1360031
Author(s):  
CHUNG-LIN WU ◽  
CHING-FEN TUAN

This paper presents an approach for calibrating the force transducer on the nano universal testing machine using milligram weights. Previous research on force calibration of such a system focused on the range from 10 mN to 200 mN, ignoring forces below 10 mN. The main purpose of this study is to analyze and calculate the uncertainty of force measurements within the range from 0.2 mN to 10 mN. The ABA calibration method in accordance with OIML R111-1 is adopted to determine the uncertainty in force measurement. The results indicate that the maximum relative uncertainty of force measurement is 7.0 × 10−3 with a 95% confidence level. The investigation can be used as the basis for evaluating measurement uncertainty of the system in small force range.


Sign in / Sign up

Export Citation Format

Share Document