Development and Application of Nomographs for an Analysis of Compression-Ignition Engines

1965 ◽  
Vol 87 (2) ◽  
pp. 148-154
Author(s):  
P. Van Der Werf ◽  
S. E. Bonamy

From an analysis of a large number of limited-pressure cycles using thermodynamic charts, nomographs are prepared. These may be used to supersede the lengthy trial-and-error process involved in cycle analysis by the charts and enable an accurate computation of engine performance and properties at salient points in the cycle to be made. Graphs prepared from the nomographs show similar trends to those obtained from tests on a single cylinder four-stroke compression-ignition engine.

2016 ◽  
Vol 12 (12) ◽  
pp. 4588-4592 ◽  
Author(s):  
M. Ravi ◽  
KCK Vijaya Kumar ◽  
A. Murugesan

For decades, four-stroke compression ignition engines prove to be indispensable in major sectors of transport, agriculture, etc., and it will be very difficult to completely replace these heavy-duty workhorses in upcoming days. However, the present situation of four-stroke compression ignition engines is miserable and the future of these engines highly relies on meeting the emission norms that are being imposed every year. In this regard, renewable liquid fuels are capable of solving the problem of energy supply in a decentralized fashion and these fuels can simultaneously help in achieving environmental sustainability. In order to find a feasible solution to these issues, an endeavor has been made in this work to investigate the engine performance, emission, noise and vibration characteristics of Compression Ignition (CI) engine fuelled with biogas as a secondary fuel and diesel as primary fuel. In this work, the secondary and primary fuels are used to power the kirloskar single cylinder four stroke naturally aspirated water cooled diesel engine. The secondary fuel (biogas) at various quantities was mixed with air and fed into the intake manifold of the engine. Also, the supply of biogas to the engine is precisely controlled by electronic flow control valve. The different flow rates of the biogas are allowed to flow inside the engine with the air intake ratio of 0.075gm/s,0.1gm/s,0.125gm/s,0.15gm/s and the analysis is done on each ratio. From the experimental results it was noted that at 0.125 gm/s, biogas operation significantly reduces noise and vibration. Overall, from the experimental results it is concluded that the usage of biogas in dual fuel mode produces comparable engine performance and reduces noise and vibrations.


2020 ◽  
Vol 103 (2) ◽  
pp. 003685042092168
Author(s):  
Ali Hussain Kazim ◽  
Muhammad Bilal Khan ◽  
Rabia Nazir ◽  
Aqsa Shabbir ◽  
Muhammad Salman Abbasi ◽  
...  

Compression ignition engines are one of the world’s largest consumers of fossil oil but have energy extraction efficiency limited to 35%. Addition of hydrogen alongside diesel fuel has been found to improve engine performance and efficiency; however, after a certain limit, hydrogen begins to show adverse effects, mainly because the ratio of oxygen to fuel decreases. This can be overcome by using oxyhydrogen, which is a mixture of hydrogen and oxygen gas. In this study, effects of addition of oxyhydrogen generated by electrolysis, with varying flows at the intake manifold, on a 315 cc compression ignition engine alongside diesel were analyzed. The engine was mounted on a Thepra test bed and torque measurements were taken at predetermined test points for diesel and 6 and 10 standard cubic feet per hour flowrates of oxyhydrogen. H10 showed the maximum improvement in engine performance equating to a 22.4% increase in both torque and power at 3000 r/min, and a 19.4% increase in efficiency at 2600 r/min was recorded. The large increase in engine performance as compared to previous results is because of high oxyhydrogen flowrate to displacement volume ratio. The oxyhydrogen flowrate to displacement ratio is the most important factor as it is directly impacts engine performance. The difference in engine performance because of oxyhydrogen becomes prominent at higher engine speed due to high suction pressure. No experimental flowrates of oxyhydrogen showed any adverse effect on the engine performance.


Author(s):  
Teja Gonguntla ◽  
Robert Raine ◽  
Leigh Ramsey ◽  
Thomas Houlihan

The objective of this project was to develop both engine performance and emission profiles for two test fuels — a 6% water-in-diesel oil emulsion (DOE-6) fuel and a neat diesel (D100) fuel. The testing was performed on a single cylinder, direct-injection, water-cooled diesel engine coupled to an eddy current dynamometer. Output parameters of the engine were used to calculate Brake Specific Fuel Consumption (BSFC) and Engine Efficiency (η) for each test fuel. DOE-6 fuels generated a 24% reduction in NOX and a 42% reduction in Carbon Monoxide emissions over the tested operating conditions. DOE-6 fuels presented higher ignition delays — between 1°-4°, yielded 1%–12% lower peak cylinder pressures and produced up to 5.5% lower exhaust temperatures. Brake Specific Fuel consumption increased by 6.6% for the DOE-6 fuels as compared to the D100 fuels. This project is the first research done by a New Zealand academic institution on water-in-diesel emulsion fuels.


2016 ◽  
Author(s):  
Henrique Dornelles ◽  
Jácson Antolini ◽  
Rafael Sari ◽  
Macklini Dalla Nora ◽  
Paulo Romeu Machado ◽  
...  

Author(s):  
Y Ren ◽  
Z H Huang ◽  
D M Jiang ◽  
L X Liu ◽  
K Zeng ◽  
...  

The performance and emissions of a compression ignition engine fuelled with diesel/dimethoxymethane (DMM) blends were studied. The results showed that the engine's thermal efficiency increased and the diesel equivalent brake specific fuel consumption (b.s.f.c.) decreased as the oxygen mass fraction (or DMM mass fraction) of the diesel/DMM blends increased. This change in the diesel/DMM blends was caused by an increased fraction of the premixed combustion phase, an oxygen enrichment, and an improvement in the diffusive combustion phase. A remarkable reduction in the exhaust CO and smoke can be achieved when operating on the diesel/DMM blend. Flat NO x/smoke and thermal efficiency/smoke curves are presented when operating on the diesel/DMM fuel blends, and a simultaneous reduction in both NO x and smoke can be realized at large DMM addition. Thermal efficiency and NO x give the highest value at 2 per cent oxygen mass fraction (or 5 per cent DMM volume fraction) for the combustion of diesel/DMM blends.


Sign in / Sign up

Export Citation Format

Share Document