Vapor Chamber Acting as a Heat Spreader for Power Module Cooling

Author(s):  
Y. P. Zhang ◽  
X. L. Yu ◽  
Q. K. Feng ◽  
L. H. Zhang

This paper presents an integrated power electronics module with a vapor chamber (VC) acting as a heat spreader to transfer the heat from the insulated gate bipolar transistor (IGBT) module to the base of the heat-sink. The novel VC integrated in a power module instead of a metal substrate is proposed. Compared with a conventional metal heat spreader, the VC significantly diffuses the concentrated heat source to a larger condensing area. The experimental results indicate that the VC based heat-sink will maintain the IGBT junction temperature 20°C cooler than a non-VC based heat-sink with high power density. The junction-to-case thermal resistance of the power module based on the VC is about 50% less than that of the power module based on a copper substrate with the same weight. The chip overshooting temperature of the copper substrate module with the same weight goes beyond 10°C against the junction temperature of the VC module at a given impulse power of 225 W. Consequently, thanks to a longer time duration to reach the same temperature, a power surge for the chip can be avoided and the ability to resist thermal impact during the VC module startup can be improved as well. The investigation shows that the VC power module is an excellent candidate for the original metal substrate, especially for an integrated power module with high power density.

2013 ◽  
Vol 303-306 ◽  
pp. 1902-1907 ◽  
Author(s):  
Yi Bo Wu ◽  
Guo You Liu ◽  
Ning Hua Xu ◽  
Ze Chun Dou

As the IGBT power modules have promising potentials in the application of the field of traction or new energy, the higher power density and higher current rating of the IGBT module become more and more attractive. Thermal resistance is one of the most important characteristics in the application of power semiconductor module. A new 1500A/3300V IGBT module in traction application is developed successfully by Zhuzhou CSR Times Electric Co., Ltd (Lincoln). Thermal resistance management of this IGBT module with high power density is performed in this paper. Based on thermal nodes network, an equivalent circuit model for thermal resistance of power module is highlighted from which the steady state thermal resistance can be optimized by theoretical analysis. Furthermore, thermal numerical simulation of 1500A/3300V IGBT module is accomplished by means of finite element model (FEM). Finally, the thermal equivalent model of the IGBT module is verified by simulation results.


2015 ◽  
Vol 2015 (HiTEN) ◽  
pp. 000208-000213 ◽  
Author(s):  
Z. Cole ◽  
B. McGee ◽  
J. Stabach ◽  
C. B. O'Neal ◽  
B. Passmore

In this work, a compact 600 – 1700 V high current power package housing either silicon carbide (SiC) or gallium nitride (GaN) power die was designed and developed. Several notable configurations of the package include diode half-bridges, co-packed MOSFET-diode pairs, and cascode configured GaN devices. In order to avoid a significant redesign effort for each new application or improvement in device technology, a device-neutral design strategy enables the use of a variety of die types from any manufacturer depending on the end-use application's requirements. The basic SOT-227 is a widely used package type found in everything from electronic welders and power supplies to motor controls and inverters. This module is a variant of that style of package which also addresses some issues that a standard SOT-227 package has when used in higher voltage applications; it has increased creepage and clearance distances which meet IPC, UL, and IEC standards up to 1700 volts while retaining an isolated substrate. It also has low parasitic values in comparison to the SOT-227. One of the key elements of this design is the removal of the baseplate. This allows for far lower weight, volume, and cost as well as reduced manufacturing complexity. The wide bandgap power package is composed of high temperature capable materials, which allow for the high junction temperatures inherent in these high power density devices. This paves the way for the design of a small, low-profile package with low parasitic inductances and a small junction-to-case thermal resistance. This paper will discuss the mechanical design of the power package as well as the three-dimensional finite-element modeling and analysis of the thermal, electrical, and mechanical characteristics. In addition, the electrical characteristics as a function of temperature of the power module up to 225 °C will be presented.


2014 ◽  
Vol 2014 (1) ◽  
pp. 000744-000750 ◽  
Author(s):  
Woochan Kim ◽  
Jongwon Shin ◽  
Khai D. T. Ngo

Achieving high power density is a challenge in the presence of stringent specifications on temperature rise and switching noise. Integration of the DBC module with PCB mother board was found to be the right approach to achieve 220-W/in3 power density, 2-kW output power, and 48.9°C junction-temperature rise. The reduced layout inductance (2.89-nH) at the source and the negative coupling between source and drain layout inductances suppressed turn-off noise. The prototyped dc-dc boost converter switched between 400 kHz to 1 MHz without self-turn-on problems and efficiency was 98.4 % by employing DBC switch module.


Sign in / Sign up

Export Citation Format

Share Document