Modeling and Simulation of an Inertia-Type Infinitely Variable Transmission

2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Giovanni Berselli

A fully mechanical, infinitely variable transmission (IVT) based on the use of an oscillating inertia is described. The system includes a four-bar linkage mechanism, an epicyclic gear train, and a pair of one-way clutches. The IVT can be used in place of both gearbox and clutch in self-propelled vehicles. A mathematical model is presented. Numerical simulations compare the behavior of a car fitted with a manual gearbox and the same car fitted with the IVT.

2004 ◽  
Vol 126 (4) ◽  
pp. 673-682 ◽  
Author(s):  
F. G. Benitez ◽  
J. M. Madrigal ◽  
J. M. del Castillo

An infinitely variable transmission (IVT), based on the use of one-way action clutches, belonging to the family of ratcheting drives is described. The mechanical foundations and numerical simulations carried out along this research envisage a plausible approach to its use as gear-box in general mechanical industry and its prospective use in automobiles and self-propelled vehicles. The system includes one-way clutches—free wheels or overrunning clutches—and two epicyclic gear systems. The output velocity, with oscillatory character, common to the ratcheting drives systems, presents a period similar to that produced by alternative combustion motors, making this transmission compatible with automobile applications. The variation of the transmission is linear in all the working range. The kinematics operating principles behind this IVT is described followed by a numerical simulation of the dynamic analysis. A prototype has been constructed and tested to assess its mechanical efficiency for different reduction ratios. The efficiency values predicted by theory agree with those experimentally obtained on a bench-rig testing equipment.


Author(s):  
Giovanni Berselli ◽  
Jacek S. Stecki

A fully mechanical infinitely variable transmission (IVT) based on the use of an oscillating inertia is described. The system includes a four-bar linkage mechanism, an epicyclic gear train and a pair of one-way clutches. The proposed IVT can be used in place of both gear-box and clutch in self-propelled vehicles. A basic model is used for a first attempt sizing of the transmission kinematic parameters. A more accurate model, achieved using Bond Graphs, is used to investigate the dynamic effect of inertias, one-way clutch compliance, and minor design changes in the kinematic parameters. Finally, simulations compare the behavior of a car fitted with a manual gear-box and the same car fitted with the proposed IVT.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Guangqing Zhang ◽  
Hengtong Zhang ◽  
Yanyan Ge ◽  
Wei Qiu ◽  
Maohua Xiao ◽  
...  

Hydromechanical continuously variable transmission (HMCVT) technology has been widely used due to its advantages of ride comfort and fuel economy. The relatively uniform efficiency expression of HMCVT is obtained by studying torque and transmission ratios to reveal steady-state characteristics and predict the output torque. Mathematical models of torque ratios are derived by analyzing the HMCVT system power flow and calculating the equivalent meshing power of epicyclic gear train and efficiency for the hydraulic system. The relationship between mechanical system transmission and hydraulic system parameters is established using the torque ratios, and a mechanical system demanding surface is proposed. Two numerical examples of the HMCVT system with single and dual variable units are demonstrated to establish an effective and convenient method. The method is validated through a physical prototype TA1-02 test.


Author(s):  
Darina Hroncová

Urgency of the research. The use of computers in technical practice leads to the extension of the possibility of solving mathematical models. This makes it possible to gradually automate complex calculations of equations of mathematical models. It is necessary to input the relevant inputs of the mathematical model, to build a simulation computer model and to monitor and evaluate the output results using a computer's output device. Target setting. The possibilities of modeling a four-bar linkage mechanism by classical analytical methods and methodsusing computer modeling are presented in this paper.The problem is to describe the creation of a computer model and to show the mathematical model and its solution in the classical ways. Actual scientific researches and issues analysis. The inspiration for the creation of the article was the study of the mechanisms in the work [1-3] and the study of other resources available in library and journal materials, as well as prepared study materials for students of Technical university Kosice. Uninvestigated parts of general matters defining. The question of building a real mechanism model. The possibilities to building a real model, based on the result of simulation. The research objective. The aim of this paper is to develop a functional model of the mechanism in ADAMS/View and Matlab and its complete kinematic analysis.The statement of basic materials.The task was to create a computer model in MSC Adams and Matlab and to perform a four-bar linkage mechanism kinematic analysis. At the same time the classical procedure of analytical methods of kinematic analysis was described. Kinematic сharacteristics of driven members and their selected points were determined. The movement of the parts of the mechanism in its significant points was analyzed. The results of the solution were shown in both programs in graphical form. Kinematic analysis was performed by both vector and graphical methods. Finally, the results with a graphical representation of parameters such as angular displacement, angular velocity and angular acceleration of mechanism members are presented in this work. The results of these solutions are created in the form of graphs. To ensure that the results do not differ from the model real, a good computer model gradually was created by its verification and modification, which is one of the advantages of MSC Adams. The practical applicability of the mathematical model was limited by the existence of an analytical solution. Conclusions. The development of computer technology has expanded the limit of solvability of mathematical models and made it possible to gradually automate the calculation of equations of mathematical models. In a computer model the auto-mated calculation can be treated as a real object sample. In various variations of calculation, we can monitor and measure the behavior of an object under different conditions, under the influence of different inputs. Graphical and vector methods were used for classical analytical methods. MSC Adams and Matlab were used for the automated calculations.


2008 ◽  
Vol 130 (11) ◽  
Author(s):  
Francesco Bottiglione ◽  
Giacomo Mantriota

The infinitely variable transmissions (IVTs) allow the transmission ratio to vary with continuity, offering the possibility of also reaching zero values for the transmission ratio and the motion inversion. In this paper an original infinitely variable transmission system is described (MG-IVT). MG-IVT is made up of the coupling of a continuously variable transmission, a planetary gear train, and two ordinary transmissions with a constant transmission ratio. By means of two frontal clutches, the MG-IVT is allowed to get two different configurations. The main purpose is to get the configurations that make the optimal efficiency of the transmission at different transmission ratios. Kinetic characteristics of single component devices are obtained, and the MG-IVT system’s performance is determined by considering how the efficiency of the component devices change as a function of operating conditions. The advantages of the MG-IVT are therefore shown in terms of power and efficiency in comparison to the traditional IVT.


2008 ◽  
Vol 59 (10) ◽  
Author(s):  
Delia Perju ◽  
Harieta Pirlea ◽  
Gabriela-Alina Brusturean ◽  
Dana Silaghi-Perju ◽  
Sorin Marinescu

The European laws and recently the Romanian ones impose more and more strict norms to the large nitrogen dioxide polluters. They are obligated to continuously improve the installations and products so that they limit and reduce the nitrogen dioxide pollution, because it has negative effects on the human health and environment. In this paper are presented these researches made within a case study for the Timi�oara municipality, regarding the modeling and simulation of the nitrogen dioxide dispersion phenomenon coming from various sources in atmosphere with the help of analytical-experimental methods. The mathematical model resulting from these researches is accurately enough to describe the real situation. This was confirmed by comparing the results obtained based on the model with real experimental values.


Sensors ◽  
2020 ◽  
Vol 21 (1) ◽  
pp. 204
Author(s):  
Shao-En Chen ◽  
Ray-Yeng Yang ◽  
Guang-Kai Wu ◽  
Chia-Che Wu

In this paper, a piezoelectric wave-energy converter (PWEC), consisting of a buoy, a frequency up-conversion mechanism, and a piezoelectric power-generator component, is developed. The frequency up-conversion mechanism consists of a gear train and geared-linkage mechanism, which converted lower frequencies of wave motion into higher frequencies of mechanical motion. The slider had a six-period displacement compared to the wave motion and was used to excite the piezoelectric power-generation component. Therefore, the operating frequency of the piezoelectric power-generation component was six times the frequency of the wave motion. The developed, flexible piezoelectric composite films of the generator component were used to generate electrical voltage. The piezoelectric film was composed of a copper/nickel foil as the substrate, lead–zirconium–titanium (PZT) material as the piezoelectric layer, and silver material as an upper-electrode layer. The sol-gel process was used to fabricate the PZT layer. The developed PWEC was tested in the wave flume at the Tainan Hydraulics Laboratory, Taiwan (THL). The maximum height and the minimum period were set to 100 mm and 1 s, respectively. The maximum voltage of the measured value was 2.8 V. The root-mean-square (RMS) voltage was 824 mV, which was measured through connection to an external 495 kΩ resistive load. The average electric power was 1.37 μW.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1272
Author(s):  
Fengsheng Chien ◽  
Stanford Shateyi

This paper studies the global stability analysis of a mathematical model on Babesiosis transmission dynamics on bovines and ticks populations as proposed by Dang et al. First, the global stability analysis of disease-free equilibrium (DFE) is presented. Furthermore, using the properties of Volterra–Lyapunov matrices, we show that it is possible to prove the global stability of the endemic equilibrium. The property of symmetry in the structure of Volterra–Lyapunov matrices plays an important role in achieving this goal. Furthermore, numerical simulations are used to verify the result presented.


Sign in / Sign up

Export Citation Format

Share Document