The Effect of Turning Vanes on Pressure Loss and Heat Transfer of a Ribbed Rectangular Two-Pass Internal Cooling Channel

2010 ◽  
Vol 133 (2) ◽  
Author(s):  
Marco Schüler ◽  
Frank Zehnder ◽  
Bernhard Weigand ◽  
Jens von Wolfersdorf ◽  
Sven Olaf Neumann

Gas turbine blades are usually cooled by using ribbed serpentine internal cooling passages, which are fed by extracted compressor air. The individual straight ducts are connected by sharp 180 deg bends. The integration of turning vanes in the bend region lets one expect a significant reduction in pressure loss while keeping the heat transfer levels high. Therefore, the objective of the present study was to investigate the influence of different turning vane configurations on pressure loss and local heat transfer distribution. The investigations were conducted in a rectangular two-pass channel connected by a 180 deg sharp turn with a channel height-to-width ratio of H/W=2. The channel was equipped with 45 deg skewed ribs in a parallel arrangement with e/dh=0.1 and P/e=10. The tip-to-web distance was kept constant at Wel/W=1. Spatially resolved heat transfer distributions were obtained using the transient thermochromic liquid crystal technique. Furthermore static pressure measurements were conducted in order to determine the influence of turning vane configurations on pressure loss. Additionally, the configurations were investigated numerically by solving the Reynolds-averaged Navier–Stokes equations using the finite-volume solver FLUENT. The numerical grids were generated by the hybrid grid generator CENTAUR. Three different turbulence models were considered: the realizable k-ε model with two-layer wall treatment, the k-ω-SST model, and the v2-f turbulence model. The results showed a significant influence of the turning vane configuration on pressure loss and heat transfer in the bend region and the outlet pass. While using an appropriate turning vane configuration, pressure loss was reduced by about 25%, keeping the heat transfer at nearly the same level in the bend region. An inappropriate configuration led to an increase in pressure loss while the heat transfer was reduced in the bend region and outlet pass.

Author(s):  
Frank Zehnder ◽  
Marco Schu¨ler ◽  
Bernhard Weigand ◽  
Jens von Wolfersdorf ◽  
Sven Olaf Neumann

Gas turbine blades are usually cooled by using ribbed serpentine internal cooling passages which are fed by extracted compressor air. The individual straight ducts are connected by sharp 180° bends. The integration of turning vanes in the bend region lets one expect a significant reduction in pressure loss while keeping heat transfer levels high. Therefore, the objective of the present study was to investigate the influence of different turning vane configurations on pressure loss and local heat transfer distribution. The investigations were conducted in a rectangular two-pass channel connected by a 180° sharp turn with a channel height-to-width ratio of H/W = 2. The channel was equipped with 45° skewed ribs in a parallel arrangement with e/dh = 0.1 and P/e = 10. The tip-to-web distance was kept constant at Wel/W = 1. Spatially resolved heat transfer distributions were obtained using the transient thermochromic liquid crystal technique. Furthermore static pressure measurements were conducted in order to determine the influence of turning vane configurations on pressure loss. Additionally, the configurations were investigated numerically by solving the Reynolds-Averaged Navier-Stokes equations (RANS method) using the Finite-Volume solver FLUENT. The numerical grids were generated by the hybrid grid generator CENTAUR. Three different turbulence models were considered: the realizable k-ε model with two-layer wall treatment, the k-ω-SST model, and the v2-f turbulence model. The results showed a significant influence of the turning vane configuration on pressure loss and heat transfer in the bend region and the outlet pass. While using an appropriate turning vane configuration pressure loss was reduced by about 25% keeping the heat transfer at nearly the same level in the bend region. An inappropriate configuration led to an increase in pressure loss while heat transfer was reduced in the bend region and outlet pass.


Author(s):  
Oguz Uzol ◽  
Cengiz Camci

A new concept for enhanced turbulent transport of heat in internal coolant passages of gas turbine blades is introduced. The new heat transfer augmentation component called “oscillator fin” is based on an unsteady flow system using the interaction of multiple unsteady jets and wakes generated downstream of a fluidic oscillator. Incompressible, unsteady and two dimensional solutions of Reynolds Averaged Navier-Stokes equations are obtained both for an oscillator fin and for an equivalent cylindrical pin fin and the results are compared. Preliminary results show that a significant increase in the turbulent kinetic energy level occur in the wake region of the oscillator fin with respect to the cylinder with similar level of aerodynamic penalty. The new concept does not require additional components or power to sustain its oscillations and its manufacturing is as easy as a conventional pin fin. The present study makes use of an unsteady numerical simulation of mass, momentum, turbulent kinetic energy and dissipation rate conservation equations for flow visualization downstream of the new oscillator fin and an equivalent cylinder. Relative enhancements of turbulent kinetic energy and comparisons of the total pressure field from transient simulations qualitatively suggest that the oscillator fin has excellent potential in enhancing local heat transfer in internal cooling passages without significant aerodynamic penalty.


Author(s):  
Pavin Ganmol ◽  
Minking K. Chyu

Described in this paper is an experimental investigation of the heat transfer and pressure characteristics in a high aspect ratio, (4.5:1 width-to-height), two-pass channel, with cube-shaped and diamond-shaped block arrays placed in both passes before and after a 180-degree sharp turn. Transient liquid crystal technique was applied to acquire detailed local heat transfer data on both the channel surfaces and the block elements. Reynolds number tested varies between 13000 and 28000. To further explore potential design alternatives for enhancement cooling, the effects of block height, ranging from 1/4, 1/2, 3/4 and full span of the channel height were also evaluated. Present results suggest that a staggered cube-array can enhance heat transfer rate up to 3.5 fold in the first pass and about 1.9 fold in the second pass, relative to the fully-developed smooth channel counterpart. For the corresponding diamond-shaped block array, the enhancement is 3.4 and 1.9 fold respectively. Even though the post-turn turbulence transport in the second pass is generally higher than that in the first pass, the effects of surface-block induced heat transfer enhancement in fact are less prominent in the post-turn region of the second pass. Pressure loss for diamond block arrays is generally higher than that of the corresponding cube-block arrays.


Author(s):  
Pavin Ganmol ◽  
Minking K. Chyu ◽  
Mary Anne Alvin

The design geometry and transport phenomena associated with the tip internal cooling can be very complex and has been little studied. Internal cooling channel near a tip region typically inherits a sharp, 180-degree, turn and little or no enhancement installation exists. To explore potential design for enhancement cooling, a series of experiments are performed to investigate the heat transfer enhancement by placing different pin-fins configurations in the tip-turn region of a two-pass channel with a 180-degree sharp turn. Transient liquid crystal technique is applied to acquire detailed local heat transfer data both on the channel surface and pin elements, for Reynolds number between 13,000 and 28,000. Present results suggest that the pin-fins can enhance heat transfer up to 2.3 fold in the tip-turn region and up to 1.3 fold for the entire channel. The presence of the pin-fins also changes the flow pattern in the post turn region which is resulting in more evenly distributed heat transfer downstream of the turn.


Author(s):  
Mohammad A. Elyyan ◽  
Danesh K. Tafti

The use of dimple-protrusions for internal cooling of rotating turbine blades has been investigated. A channel with dimple imprint diameter to channel height ratio (H/D = 1.0), dimple depth to channel height ratio (δ/H = 0.2), spanwise and streamwise pitch to channel height ratios (P/H = S/H = 1.62) was modeled. Four rotation numbers; Rob = 0.0, 0.15, 0.39, and 0.64, at nominal flow Reynolds number, ReH = 10000, were investigated to quantify the effect of Coriolis forces on the flow structure and heat transfer in the channel. Under the influence of rotation, the leading (protrusion) side of the channel showed weaker flow impingement, larger wakes and delayed flow reattachment with increasing rotation number. The trailing (dimple) side experienced a smaller recirculation region inside the dimple and stronger flow ejection from the dimple cavity with increasing rotation. Secondary flow structures in the cross-section played a major role in transporting momentum away from the trailing side at high rotation numbers and limiting heat transfer augmentation. While heat transfer augmentation on the trailing side increases by over 90% at Rob = 0.64, overall Nusselt number and friction coefficient augmentation ratios decrease from 2.5 to 2.05, and 5.74 to 4.78, respectively, as rotation increased from Rob = 0 to Rob = 0.64.


Author(s):  
Chao-Cheng Shiau ◽  
Andrew F. Chen ◽  
Je-Chin Han ◽  
Robert Krewinkel

Abstract A realistic internal cooling system of a turbine blade includes both ribs and pin-fins inside the passages to enhance the heat transfer. However, the majority studies in the open literature assessing the heat transfer characteristics on a simplified cooling model by examining ribbed-roughen passages and pin-finned passage separately. This work presents the high-resolution heat transfer coefficients of a scaled realistic turbine blade internal cooling design. The cooling system, using a 3D-printed plastic material, consists of an S-shaped inlet, four serpentine passages (three U-bends) of variable aspect ratio, and the trailing edge ejection. Angled ribs are implemented inside the passages and the elongated fins and pins are used near the trailing edge. Two dust holes are realized on the blade tip, the injections are individually controlled to reflect the realistic coolant flowrate variation inside the entire internal cooling system. The tests are conducted at two Reynolds number, 45,000 and 60,000 based on the hydraulic diameter of the inlet passage. Transient heat transfer technique using thermochromic liquid crystal is applied to obtain the detailed heat transfer characteristic inside the cooling channel. The local and averaged Nusselt numbers are also compared with the correlations in the open literature. This paper provides gas turbine designers the difference of local heat transfer distributions between the realistic and simplified internal cooling designs.


2013 ◽  
Vol 135 (3) ◽  
Author(s):  
Krishnendu Saha ◽  
Sumanta Acharya

The pressure drop and heat transfer in a two pass internal cooling channel with two different bend geometries is experimentally studied with the goal of improving the thermal performance factor (TPF) in the coolant channel. The geometries studied are (1) a baseline U-bend geometry with a rectangular divider wall, (2) a symmetrical bulb at the end of the divider wall, and (3) a combination of the symmetrical bulb and a bow on the opposite outer wall leading to a shaped flow contraction and expansion in the bend. Tests are conducted for four Reynolds number ranging from 10,000 to 55,000. The symmetrical bulb eliminates the separation due to the sharp turn and makes the heat transfer distribution in the bend portion more uniform. This modification reduces the bend pressure drop by 37% and augments the TPF by nearly 29% compared to the baseline case. The combination of bulb and bow case increases the local heat transfer in the bend region significantly, and reduces the bend pressure drop by nearly 27% leading to an augmentation of the TPF of 32% compared to the baseline case. These improvements in TPF point to the benefits of using the improved bend designs in internal cooling channels.


2008 ◽  
Author(s):  
X. C. Li ◽  
P. Corder

The leading edge of turbine blades is one of the critical areas that need to be cooled effectively because of the high local heat transfer rate of the main flow. Film cooling with different shaped holes as well as internal cooling by impinging jets has successfully been applied in modern gas turbine applications. This paper numerically studies the cooling of the leading edge with a row of dual impinging jets — two jets close to each other. Heat transfer of the dual jets is compared to that of a single jet (in a row) based on the same flow rate or jet velocity. The effect of the distance between the dual jets and the jet inclination angle is examined to seek the best geometric parameters. In addition, the curvature of the leading edge surface is considered to examine the heat transfer difference between curved and flat walls. Various jet-to-target spacing and Reynolds numbers are also studied. Results show that the dual impinging jets generally produce two high heat transfer regions in the stagnation point, and the peak value is slightly higher than the single row of jets with the same Reynolds number. When the distance between two jets is 3d, the jet flow after bouncing back from the symmetry line affects the heat transfer as a crossflow. The target surface curvature has little effect on the overall heat transfer, but the peak heat transfer coefficient is lower on the curved surface than that on the flat surface. The dual impinging jets present a higher average heat transfer around the stagnation region.


Author(s):  
Bernhard Bonhoff ◽  
Uwe Tomm ◽  
Bruce V. Johnson ◽  
Ian Jennions

A computational study was performed for the flow and heat transfer in rotating coolant passages with two legs connected with a U-bend. The dimensionless flow conditions and the rotational speed were typical of those in the internal cooling passages of turbine blades. The calculations were performed for two geometries and flow conditions for which experimental heat transfer data were obtained under the NASA HOST project. The first model had smooth surfaces on all walls. The second model had opposing ribs staggered and angled at 45 deg. to the main flow direction on two walls of the legs, corresponding to the coolant passage surfaces adjacent to the pressure and suction surfaces of a turbine airfoil. Results from these calculations were compared with the previous measurements as well as with previous calculations for the nonrotating models at a Reynolds number of 25,000 and a rotation number of 0.24. At these conditions, the predicted heat transfer is known to be strongly influenced by the turbulence and wall models. The differential Reynolds-stress model (RSM) was used for the calculation. Local heat transfer results are presented as well as results averaged over wall segments. The averaged heat transfer predictions were close to the experimental results in the first leg of the channel, while the heat transfer in the second leg was overestimated by RSM. The flow field results showed a large amount of secondary flow in the channels with rotational velocities as large as 90 percent of the mean value. These secondary flows were attributed to the buoyancy effects, the Coriolis forces, the curvature of the bend and the orientation of the skewed ribs. Details of the flow field are discussed. Both the magnitude and the change of the heat transfer were captured well with the calculations for the rotating cases.


Author(s):  
Sean C. Jenkins ◽  
Frank Zehnder ◽  
Igor V. Shevchuk ◽  
Jens von Wolfersdorf ◽  
Bernhard Weigand ◽  
...  

Internal cooling channels with differing aspect ratios are typically found in gas turbine blades due to the varying thickness of the blade from the leading to trailing edge. These serpentine passages often contain several 180° bends, which are sharp edged in the region of the blade tip. The 180° bend has a pronounced effect on the heat transfer characteristics in the outlet channel and tip wall, where a strong influence is seen due to the divider wall-to-tip wall distance in the bend. The present study investigates the effect of the divider wall-to-tip wall distance for a ribbed two-pass cooling channel with a 2:1 inlet and 1:1 outlet channel. Spatially resolved heat transfer measurements were made using the transient thermochromic liquid crystal technique for a smooth and a ribbed configuration using parallel 45° ribs. Effects of the 180° bend on heat transfer and rib-induced enhancements were identified separately and bend effects were found to dominate the heat transfer increase in the outlet channel near the bend. Pressure losses due to the bend and ribs were also independently evaluated for a range of tip wall distances. Results show that the smaller tip wall distances increase heat transfer on the tip wall and outlet channel, but at the cost of an increased pressure loss. An optimum tip wall position is suggested, forming a compromise between heat transfer improvement and increased pressure losses.


Sign in / Sign up

Export Citation Format

Share Document