An Investigation of Air-Cooled Steam Condenser Performance Under Windy Conditions Using Computational Fluid Dynamics

Author(s):  
M. T. F. Owen ◽  
D. G. Kröger

The development of an efficient and reliable method of evaluating the performance of an air-cooled steam condenser (ACC) under windy conditions using computational fluid dynamics (CFD) is presented. A two-step modeling approach is employed as a result of computational limitations. The numerical ACC model developed in this study makes use of the pressure jump fan model, among other approximations, in an attempt to minimize the computational expense of the performance evaluation. The accuracy of the numerical model is verified through a comparison of the numerical results to test data collected during full-scale tests carried out on an operational ACC. Good correlation is achieved between the numerical results and test data. The effect of wind on ACC performance at El Dorado Power Plant (Nevada, USA) is investigated. It is found that reduced fan performance due to distorted flow at the inlet of the upstream fans is the primary contributor to the reduction in ACC performance associated with increased wind speed in this case. The model developed in this study has the potential to allow for the evaluation of large ACC installations and provides a reliable platform from which further investigations into improving ACC performance under windy conditions can be carried out.

2017 ◽  
Vol 18 (2) ◽  
pp. 212-224
Author(s):  
Muhammad Abid ◽  
Hafiz Abdul Wajid ◽  
Muhammad Zohair Iqbal ◽  
Shayan Najam ◽  
Ali Arshad ◽  
...  

This paper presents design of aerodynamic downforce generating devices (front wing, rear wing and diffuser) to enhance the performance of the Formula Student Race Car using numerical and experimental studies. Numerical results using computational fluid dynamics (CFD) studies were primarily validated with the experimental results performed in the wind tunnel. It was concluded that the use of a downforce package can enhance the performance of the vehicle in the competition.


Author(s):  
N R J Williams

This paper investigates the potential performance improvements of adding contracted loaded tips to propellers. A Wageningen B5-75 Series propeller has been simulated and verified against published experimental test data. Contracted tips have then been added to a Wageningen propeller and the modified propeller then simulated. A CFD method and model has been developed. Pressure, velocity and vector plots have all been analysed detailing the mechanism behind the contracted tips. Limitations behind this method have been explored and explained, and recommendations for further studies made. The development of a database of propeller characteristics and performance chart data to allow quick evaluation of designs has also been proposed. 


2014 ◽  
Vol 598 ◽  
pp. 265-270 ◽  
Author(s):  
Amir Hozhabr ◽  
Ramin Radi ◽  
Hossein Chenari ◽  
Arash Chogani ◽  
Masoud Esmaeelipour

In this paper, the effect of crosswind on triple natural draft dry cooling towers is studied and analyzed. Concerning this area, many researches have concentrated on one cooling tower. This research focuses on the mutual effects of the adjacent towers' performance, and also makes a comparison between the efficiency of the three cooling towers in windy and no-wind conditions, using Computational Fluid Dynamics (CFD). In modeling the crosswind condition, at first solid windbreakers, and then radiator-type windbreakers are used for each cooling tower. Finally, the water outlet temperatures of the radiators' cooling towers are analyzed, and the total heat rejections at different conditions are compared. Numerical results show that radiator-type windbreakers can substantially improve cooling efficiency more than usual solid-types. It should be mentioned that a complete grid study is done to achieve a grid-independent solution.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 301
Author(s):  
Haedr Abdalha Mahmood Alsalame ◽  
Joo Hee Lee ◽  
Gwi Hyun Lee

In this study, a performance evaluation of a photovoltaic thermal (PVT) system using nanofluids was carried out through an efficiency comparison study using water, CuO-water, and Al2O3-water nanofluids as the heat medium of the PVT system. In addition, a model for computational fluid dynamics (CFD) analysis was established, and the validity of the model was verified by comparing it with the experimental results of the PVT system. Through this, it was confirmed that the outlet temperature of the PVT system using nanofluids can be predicted by applying various conditions. Based on the results, the use of nanofluid as heating medium for the PVT system is proposed to improve the efficiency sufficiently compared to the conventional heating media.


2019 ◽  
Vol 128 ◽  
pp. 09002
Author(s):  
Abdullah Alakalabi ◽  
Weiming Liu

Computational fluid dynamics (CFD) approach is applied to investigate heavy gas dispersion in the atmosphere, under the action of wind. Because of the effect of buoyancy, steady double peaks of the heavy gas concentrations in the downstream area are observed from the numerical results. The double peaks of the concentrations are a special pattern of heavy gas dispersion, which cannot be found in the neutral gas dispersions. Four types of obstacles are placed behind the leakage source to study the influences of these obstacles to the heavy gas dispersions. The numerical results show the detailed shapes and other contents of the heavy clouds under the obstacles.


2013 ◽  
Vol 690-693 ◽  
pp. 2012-2015 ◽  
Author(s):  
Fan Ming Meng ◽  
Tao Long

The film temperature of sliding bearing considering the cavitation is studied based on the Rayleigh-Plesset (PRE) model with the computational fluid dynamics (CFD) method. The numerical results show that the maximum film temperature with the cavitation effect becomes smaller than that without the cavitation effect. The larger average vaporization rate of the film, the more decrease in the film temperature.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Clemens Griebel

Abstract In this paper, test data are combined with results from two different computational fluid dynamics (CFD) models to investigate the leakage performance of leaf seals. Experimental data are gathered for centric rotor position using a rotating test rig at various rotational speeds, inlet pressures, and preswirl velocities. The test results are compared to brush and labyrinth seal leakage data from previous studies and reveal elevated leakage rates of the leaf seal. As the tested leaf seals are subject to thermal leaf deformation from welding during the manufacturing process, the influence of geometry variations within the leaf pack on leakage performance is investigated with the help of numerical simulations. Both a fully resolved leaf model and a modeling approach based on porous media are used. The CFD models are validated based on pressure measurements within the up- and downstream coverplate gaps at three different radii. Both CFD models show good agreement with test data for different inlet parameters. A variation of cold clearance shows moderate influence on leakage and small clearances can be brought into context with hydrodynamic lift-up indicated by experimental leakage data. Much higher sensitivity on leakage mass flow is predicted for variations in leaf spacing at the leaf root and leaf tip. The latter is discussed as an explanation for the measured leakage of the test seal with its manufacturing variations, while the first quantitatively shows optimization potential at the design stage of leaf seals.


Sign in / Sign up

Export Citation Format

Share Document