scholarly journals An investigation into contracted loaded tip propellers using computational fluid dynamics (CFD)

Author(s):  
N R J Williams

This paper investigates the potential performance improvements of adding contracted loaded tips to propellers. A Wageningen B5-75 Series propeller has been simulated and verified against published experimental test data. Contracted tips have then been added to a Wageningen propeller and the modified propeller then simulated. A CFD method and model has been developed. Pressure, velocity and vector plots have all been analysed detailing the mechanism behind the contracted tips. Limitations behind this method have been explored and explained, and recommendations for further studies made. The development of a database of propeller characteristics and performance chart data to allow quick evaluation of designs has also been proposed. 

2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Sulistiya Sulistiya ◽  
Alief Sadlie Kasman

AbstractNumerical simulation using Computational Fluid Dynamics (CFD) method is one way of predicting airflow characteristics on the model. This method is widely used because it is relatively inexpensive and faster in getting desired results compared with performing direct testing. The correctness of a computational simulation output is highly dependent on the input and how it was processed. In this paper, simulation is done on Onera M6 Wing, to investigate the effect of a turbulence model’s application on the accuracy of the computational result. The choice of Onera M6 Wing as a simulation’s model is due to its extensive database of testing results from various wind tunnels in the world. Among Turbulence models used are Spalart-Allmaras, K-Epsilon, K-Omega, and SST.Keywords: CFD, fluent, Model, Turbulence, Onera M6, Spalart-Allmaras, K-Epsilon, K-Omega, SST.AbstraksSimulasi numerik dengan menggunakan metode Computational Fluid Dynamics (CFD) merupakan salah satu cara untuk memprediksi karakteristik suatu aliran udara yang terjadi pada model. Metode ini banyak digunakan karena sifatnya yang relatif murah dan cepat untuk mendapatkan hasil dibandingkan dengan melakukan pengujian langsung. Benar tidak hasil sebuah simulasi komputasi sangat tergantung pada inputan yang diberikan serta cara memproses data inputan tersebut. Pada tulisan ini dilakukan simulasi dengan menggunakan sayap onera M6 dengan tujuan untuk mengetahui pengaruh penggunaan model turbulensi terhadap keakuratan hasil komputasi. Pilihan sayap onera M6 sebagai model simulasi dikarenakan model tersebut sudah memiliki database hasil pengujian yang cukup lengkap dan sudah divalidasi dari berbagai terowongan angin di dunia. Model turbulensi yang digunakan diantaranya Spalart-Allmaras, K-Epsilon, K-Omega dan SST.Kata Kunci : CFD, fluent, Model, Turbulensi, Onera M6, Spalart-Allmaras, K-Epsilon, K-Omega, SST.


2013 ◽  
Vol 61 (1) ◽  
pp. 155-160 ◽  
Author(s):  
G. Sztarbała

Abstract The aim of this paper is to present the application of Computational Fluid Dynamics (CFD) to the assessment of conditions inside construction works during a fire. The CFD method is now commonly used to support the design process of fire safety in construction works. This method is very useful at the preliminary stage of design because it is possible to check the internal environment during a fire and evaluate whether requirements of fire safety are met


2012 ◽  
Vol 220-223 ◽  
pp. 1698-1702
Author(s):  
Jian Chen ◽  
Zhu Ming Su ◽  
Qi Zhou ◽  
Jian Ping Shu

A novel hydraulic rotary high speed on/off valve is investigated. The function of the outlet turbine and the effect on revolution speed of valve spool are analyzed. The inner fluid flow condition under full open case of the on/off valve is simulated using computational fluid dynamics(CFD) method based on Ansys/Fluent and velocity and pressure profiles of fluid inside valve are obtained. Suggestions on optimizing the geometry of valve to decrease transition losses are given.


Author(s):  
M. T. F. Owen ◽  
D. G. Kröger

The development of an efficient and reliable method of evaluating the performance of an air-cooled steam condenser (ACC) under windy conditions using computational fluid dynamics (CFD) is presented. A two-step modeling approach is employed as a result of computational limitations. The numerical ACC model developed in this study makes use of the pressure jump fan model, among other approximations, in an attempt to minimize the computational expense of the performance evaluation. The accuracy of the numerical model is verified through a comparison of the numerical results to test data collected during full-scale tests carried out on an operational ACC. Good correlation is achieved between the numerical results and test data. The effect of wind on ACC performance at El Dorado Power Plant (Nevada, USA) is investigated. It is found that reduced fan performance due to distorted flow at the inlet of the upstream fans is the primary contributor to the reduction in ACC performance associated with increased wind speed in this case. The model developed in this study has the potential to allow for the evaluation of large ACC installations and provides a reliable platform from which further investigations into improving ACC performance under windy conditions can be carried out.


RSC Advances ◽  
2015 ◽  
Vol 5 (37) ◽  
pp. 28938-28949 ◽  
Author(s):  
Reza Gharibshahi ◽  
Arezou Jafari ◽  
Ali Haghtalab ◽  
Mohammad Saber Karambeigi

In this study a computational fluid dynamics (CFD) method has been developed to simulate the effect of pore morphology and its distribution in a 2D micromodel on the enhanced oil recovery factor of nanofluid flooding.


2011 ◽  
Vol 236-238 ◽  
pp. 1619-1622 ◽  
Author(s):  
Bo Fu Wu ◽  
Jin Lai Men ◽  
Jie Chen

In order to enhance the operational safety of tram vehicle and reduce the wear of guide wheels mounted on the vehicle, it is necessary to remove particles such as dusts and silts from tramway surface. The aim of this paper is to evaluate the effectiveness of street vacuum sweeper for sucking up dusts from tramway surface. A numerical model was developed based on dusts removal process. Under different pressure drops across the pickup head of the street vacuum sweeper, the flow field and dusts removal efficiency were analyzed with computational fluid dynamics (CFD) method. The numerical results show that a higher pressure drop can improve the airflow field in the pickup head and results in higher dusts removal efficiency, but higher pressure drop definitely need more energy. Therefore, a balance should be taken into consideration.


Author(s):  
Kuo-Ying Tsai ◽  
Shih-Chang Ku

A crack with unusual failure mode after thermal shock test (TST) is observed on the die bulk of certain bare-die FCBGA, in which the crack penetrates longitudinally within silicon die region. The computational fluid dynamics (CFD) method is introduced to investigate this phenomenon. The transient analysis results indicate a significant temperature difference existing between top and bottom surfaces of the silicon die in the very beginning of the liquid-to-liquid temperature transition. This could be fatal to a brittle material like silicon. Some possible solutions are then surveyed to alleviate the thermal impact to the FCBGA. At least one of enhanced proposals is proved effective to eliminate die crack occurrence after TST.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammadreza Salehi ◽  
Nader Pourmahmoud ◽  
Amir Hassanzadeh ◽  
S. Hoseinzadeh ◽  
P.S. Heyns

Purpose Using the computational fluid dynamics (CFD) technique, this paper aims to investigate the influence of key parameters such as throat diameter; the suction ratio on the flow field behaviors such as Mach number; pressure; and temperature. Design/methodology/approach To investigate the effect of throat diameter, it is simulated for 4, 6, 8 and 10 mm as throat diameters. The governing equations have been solved by standard code of Fluent Software together with a compressible 2 D symmetric and turbulence model with the standard k–ε model. First, the influence of the throat diameter is investigated by keeping the inlet mass flow constant. Findings The results show that a place of shock wave creation is changed by changing the throat diameter. The obtained results illustrate that the maximum amount of Mach number is dependent on the throat diameter. It is obtained from the results that for smaller throats higher Mach numbers can be obtained. Therefore, for mixing purposes smaller throats and for exhausting bigger throats seems to be appropriate. Originality/value The obtained numerical results are compared to the existing experimental ones which show good agreement.


Author(s):  
Baojie Liu ◽  
Jiaxin Liu ◽  
Xianjun Yu ◽  
Dejun Meng ◽  
Wenbin Shi

Abstract The results of previous studies have proved that manufacture variations can cause a noticeable influence on compressor aerodynamic performance. The main objective of this paper is to investigate the influence rules and mechanisms of manufacture variations on supersonic/transonic blades aerodynamic performance. The variations used in this study were measured from some newly manufactured high-pressure compressors. In the present study, several blade sections with different design Mach number conditions are selected for further statistical analysis of measured deviation data. Therefore, some systematic errors in the deviation data have been revealed. Based on these data, the computational fluid dynamics (CFD) method has been used to obtain the aerodynamic performances of a large number of the measured blade elements. And then, the analysis of the influence rules of manufacture variations on blade aerodynamic performance in different Mach number conditions has been carried out. The present results indicate that the effects of manufacture variations on blade aerodynamic performance in the lower Mach number (0.8) condition are much more significant comparing to that in the higher Mach number (0.9∼1.2) conditions. Based on this, influence mechanisms of manufacture variations on positive incidence range and negative incidence range have been analyzed. The differences of influence mechanisms in different Mach number conditions are the focus of research.


2016 ◽  
Vol 60 (02) ◽  
pp. 61-77
Author(s):  
Brendan Smoker ◽  
Bart Stockdill ◽  
Peter Oshkai

In this paper, we outline and validate a computational fluid dynamics (CFD) method for determining the hydrodynamic forces of an escort tug in indirect towing mode. We consider a range of yaw angles from 0° to 90° and a travel speed of 8 knots. We discuss the effects of scaling on prediction of flow separation and hydrodynamic forces acting on the vessel by carrying out CFD studies on both model and full-scale escort tugs performing indirect escort maneuvers. As the escort performance in terms of maximum steering forces is strongly dependent on the onset of flow separation from the hull and skeg of the tug, the model-scale simulations under-predict the maximum steering force by 12% relative to the full-scale simulations. In addition, we provide a method for converting the hydrodynamic forces of the CFD escort study into towline and thrust forces.


Sign in / Sign up

Export Citation Format

Share Document