A Numerical Model for Predicting Gas Diffusion Layer Failure in Proton Exchange Membrane Fuel Cells

Author(s):  
Peiyun Yi ◽  
Linfa Peng ◽  
Xinmin Lai ◽  
Jun Ni

Gas diffusion layer (GDL) is one of the critical components in proton exchange membrane fuel cells (PEMFCs) and plays several important roles, such as structural support, reactants permeation, water removal, electrons, and heat conduction. The assembly pressure on bipolar plate is an important factor that affects the performance of PEMFC stack. Not enough assembly pressure leads to leakage of fuels and high contact resistance. Too much pressure, on the other hand, results in damage to the GDL, which increases the GDL Ohmic resistance and interfacial contact resistance, and in turn influences the reactant transport and water removal. The objective of the present study is to develop a numerical model to predict the onset of GDL failure and obtain the maximum assembly pressure on bipolar plate. Composite micromechanical model is applied to calculate the effective elastic properties of GDL; strength failure criterion is established to judge GDL damage with the stress distribution; finite element method model is developed to show the failure zone and the failure propagation in GDL combining the estimated elastic properties and strength failure criterion. Toray TGP-H-060 carbon paper is introduced as a numerical example and the numerical results show good agreements with experimental results. This numerical prediction model is beneficial to understand the basic mechanism of GDL failure and helpful to guide the assembling of PEMFC stack.

2014 ◽  
Vol 11 (4) ◽  
Author(s):  
Guo Li ◽  
Jinzhu Tan ◽  
Jianming Gong

The clamping force during the assembly of proton exchange membrane (PEM) fuel cells has a great influence in the contact resistance between bipolar plate (BPP) and gas diffusion layer (GDL). In this paper, three different types of carbon papers are used as GDL materials. The contact resistance between BPP and GDL is measured under different applied clamping torques. Based on experimental data, a relationship of compressive pressure resulting from the applied clamping torque and contact resistivity is established by the least square method. Based on the commercial code abaqus, a program is developed to predict the contact resistivity. In addition, the changes of contact pressure, contact area, and porosity of GDL are studied. The experimental result shows that the contact resistivity nonlinearly decreases with increasing of the applied clamping torque. The thicker GDL without fillers has a higher contact resistivity. Finite element analysis (FEA) results show that both contact area and contact pressure increase with increasing of the compressive pressure in the same fillet radius of the rib, except that the fillet radius is zero. The porosity decreases with increase of the clamping force. The contact resistivity is consistent with the experimental results. So it can be predicted very well.


2010 ◽  
Vol 447-448 ◽  
pp. 775-779 ◽  
Author(s):  
Kurniawan Miftah ◽  
Wan Ramli Wan Daud ◽  
Edy Herianto Majlan

Stress applying in the stack of Proton Exchange Membrane Fuel Cell (PEMFC) effects the performance of PEMFC. High pressure in the Membrane Electrode Assembly (MEA) can reduce electrical contact resistance between bipolar plate and MEA. Nevertheless, too high pressure in the PEMFC can destroy MEA. Performance of PEMFC can be optimized by make proportional stress in the assembly of PEMFC. Finite element analysis (FEA) is one of method that can be used for analysis of stress in the PEMFC stack. However, setting of parameter in the analysis using FEA still became one of problem if realistic result must be desired. This paper reports setting of parameters in the stress analysis of PEMFC assembly using FEA method and study relationship of stress analysis with electrical contact resistance.


Author(s):  
Linfa Peng ◽  
Diankai Qiu ◽  
Peiyun Yi ◽  
Xinmin Lai

Contact pressure distribution between bipolar plate (BPP) and gas diffusion layer (GDL) has significant impact on performance and life time of proton exchange membrane (PEM) fuel cell. Most current studies for contact pressure prediction are based on finite-element analysis (FEA), requiring huge computation for the whole fuel cell assembly. Comparatively speaking, the more generalized and well-developed analytical methods are deficient in this field. The objective of this study is to propose a full-scale continuous equivalent model to predict GDL contact pressure effectively in the PEM fuel cell. Using the model, the nonuniform pressure distribution resulted from dimensional errors of metallic BPP and GDL could be obtained. First, a parameterized theoretical model of BPP/GDL assembly is established based on equivalent stiffness analysis of components, and definition methods of dimensional errors are proposed according to actual measurements and Monte Carlo simulation (MCS). Then, experiments are carried out to obtain the actual GDL contact pressure and the model results show good agreement with experimental results. At last, effects of dimensional errors are investigated. Acceptable assembly pressure for a given fuel cell is suggested based on the model. This model is helpful to understand the effect of the dimensional errors, and it also could be adopted to guide the manufacturing of BPP, GDL, and the assembling of PEM fuel cell.


2011 ◽  
Vol 52-54 ◽  
pp. 875-880
Author(s):  
Kurniawan Miftah ◽  
Wan Ramli Wan Daud ◽  
Edy Herianto Majlan

The assembly of proton exchange membrane fuel cell (PEMFC) is the important factor for the performance. The achievement of proper design will improve the pressure distribution and the electrical contact resistance between fuel cell parts. The assembly pressure affects the contact behavior between of bipolar plate and gas diffusion layer (GDL). In this study, finite element analysis (FEA) was used to analyze the behavior of single cell fuel cell under the variation of assembly pressure. It shows 3D of deformation, and the compression pressure every part of the fuel cell components. The simulation varied the torque assembly from 1 Nm to 3 Nm with increment 0.5 Nm. The simulation using FEA shows that high assembly pressure also affects to the high deformation and stress in the components of fuel cell. This phenomenon affects to the performance of PEM fuel cell.


Author(s):  
Shashank Sharma ◽  
Mayank Gupta ◽  
Shaswat Anand ◽  
Naveen Kumar

The high costs associated with fuel cell manufacturing have precluded its production on a large scale. The major emphasis of the present wok is to bring down the overall cost of an independent fuel cell unit. The manufacturing cost can be reduced using commonly available and corrosion resistant materials into the fuel cell assembly. Bipolar plates usually employed in proton exchange membrane fuel cells are fabricated from conducting graphite. Graphite owing to its conductivity, corrosion resistance and easy machinability, is the preferred material in static systems. However, due to its brittle characteristics and failure under bending loads, graphite is inferior in its mechanical properties as compared to metals and their alloys. Dimensional stability is also compromised due to wear and friction. In the present work, an attempt is made to assemble a fuel cell stack which would have durability and sustainability in dynamic conditions, where the setup would be able to withstand periodic shocks, vibrations, and fatigue loads. Instead of employing graphite as the bipolar plate which serves the dual purpose of a current collector and area for flow fields, graphite foil protected aluminum as the current collector and machined plastic slabs on which the flow fields are carved, have been employed. Both the substitutes are easily available owing to mass production and have a small processing cost associated with them. Further, the technique employed for processing of Nafion and hot pressing of the catalyst loaded gas diffusion layer onto the proton exchange membrane have been elaborated in the present paper along with the systematic approach followed by the research group eliminating various current collector candidates for fuel cell applications. The various stages attained towards the final fabrication of the foil protected lightweight current collector, has also been highlighted in the present work.


Author(s):  
P. Karthikeyan ◽  
H. Calvin Li ◽  
G. Lipscomb ◽  
S. Neelakrishnan ◽  
J. G. Abby ◽  
...  

The most critical aspect of fuel cell water management is the delicate balance of membrane hydration and avoiding cathode flooding. Liquid water accumulation in the interfacial contact area between the flow channel landing and gas diffusion layer (GDL) can dramatically impact steady and transient performance of proton exchange membrane fuel cells (PEMFCs). In this concern, a porous landing could facilitate water removal in the cathode flow channel and significantly improve PEMFCs performance. In this work, an attempt has been made to fabricate the porous interdigitated cathode flow channels from a porous carbon sheet. Performance measurements have been made with nominally identical PEMFCs using non-porous (serpentine and interdigitated) and porous (interdigitated) cathode flow channels. PEMFCs with porous interdigitated flow channels had 48% greater power output than PEMFCs with non-porous interdigitated flow channels at high current densities. For the non-porous interdigitated flow channel, significant performance loss appears to arise from greatly reduced oxygen transport rates when the water generation rate exceeds the water removal rate, however for the porous interdigitated flow channel, the design removes the accumulated liquid water from the landing area through the capillarity of its porous structure and eliminates the stagnant regions under the landing, thereby reducing liquid flooding in the interface between landing and GDL area.


2011 ◽  
Vol 27 (4) ◽  
pp. 545-558 ◽  
Author(s):  
C.-Y. Wen ◽  
H.-T. Chang ◽  
T.-W. Luo

ABSTRACTIn proton exchange membrane fuel cells (PEMFCs), a low interfacial pressure between the bipolar plates and the membrane exchange assembly (MEA) results in a high contact resistance. Conversely, an excessive interfacial pressure reduces the porosity of the gas diffusion layer (GDLs) and may damage the proton exchange membrane (PEM). Consequently, the performance of a PEMFC is critically dependent upon the clamping method. Accordingly, this study emphasizes the development of a numerical methodology for analyzing clamping of a PEMFC and constructs a detailed three-dimensional (3D) full-scale finite element (FE) model of a PEMFC with the traditional and most popular point-load design as an example. The numerical method is first validated by experiments. A series of simulations are then performed on the example cases (i.e. 2-bolt, 4-bolt or 6-bolt) to analyze their behaviors on the contact pressure between the bipolar plates and the MEA and the corresponding effects on the GDL porosity and the contact resistance, under the constraints that the membrane and gaskets remain within their respective elastic limits and the porosity of the GDL has a value higher than 0.5. Overall, to complete the analysis procedures proposed in this paper, the results show that the six-bolt clamping mode with a tightening torque of 16 N-m achieves a uniform pressure distribution and a high interfacial pressure, and therefore represents the optimal clamping mode for the performed example cases.


Sign in / Sign up

Export Citation Format

Share Document