The Experimental and Theoretical Evaluation of an Indirect Cooling System for Machining

2010 ◽  
Vol 133 (3) ◽  
Author(s):  
Jay C. Rozzi ◽  
John K. Sanders ◽  
Weibo Chen

Cutting fluids have been used in machining processes for many years to decrease the temperature during machining by spraying the coolant into the machining zone directly on the cutting tool and the part. This has the effect of decreasing the tool temperature, which increases tool life and improves the part quality. These benefits come with significant drawbacks. Cutting fluids are environmentally unfriendly, costly, and potentially toxic. An alternative that has been evaluated in this paper is an internal cooling system (ICS) for lathe turning, which cools the cutting tool using a very small amount of an inert, cryogenic working fluid routed through a microchannel heat exchanger (MHX) that is mounted beneath the cutting tool insert. The working fluid absorbs the heat generated during the machining process after which it is harmlessly vented to the environment. This indirect cooling technique results in an environmentally friendly machining process that uses no cutting fluids, enables increased processing speed, and reduces manufacturing costs. An approximate heat transfer model was developed and used to predict the tool life as a function of the tool cooling approach for various speeds. Machining experiments were completed to validate the heat transfer model and confirm that the ICS can significantly improve tool life relative to conventional flood cooling. The validated model was then used to evaluate alternative cooling approaches using the ICS. It was found that the use of a cryogenic working fluid can significantly improve tool life at all cutting speeds but that the latent heat capacity of the working fluid should exceed the expected maximum heat transfer rate into the tool. This work established that the ICS approach is an effective means to increase tool life without the disadvantages associated with external cryogenic cooling methods.

2018 ◽  
Vol 21 (8) ◽  
pp. 1286-1297 ◽  
Author(s):  
Antonio Gil ◽  
Andrés Omar Tiseira ◽  
Luis Miguel García-Cuevas ◽  
Tatiana Rodríguez Usaquén ◽  
Guillaume Mijotte

Each of the elements that make up the turbocharger has been gradually improved. In order to ensure that the system does not experience any mechanical failures or loss of efficiency, it is important to study which engine-operating conditions could produce the highest failing rate. Common failing conditions in turbochargers are mostly achieved due to oil contamination and high temperatures in the bearing system. Thermal management becomes increasingly important for the required engine performance. Therefore, it has become necessary to have accurate temperature and heat transfer models. Most thermal design and analysis codes need data for validation; often the data available fall outside the range of conditions the engine experiences in reality leading to the need to interpolate and extrapolate disproportionately. This article presents a fast three-dimensional heat transfer model for computing internal temperatures in the central housing for non-water cooled turbochargers and its direct validation with experimental data at different engine-operating conditions of speed and load. The presented model allows a detailed study of the temperature rise of the central housing, lubrication channels, and maximum level of temperature at different points of the bearing system of an automotive turbocharger. It will let to evaluate thermal damage done to the system itself and influences on the working fluid temperatures, which leads to oil coke formation that can affect the performance of the engine. Thermal heat transfer properties obtained from this model can be used to feed and improve a radial lumped model of heat transfer that predicts only local internal temperatures. Model validation is illustrated, and finally, the main results are discussed.


2014 ◽  
Vol 926-930 ◽  
pp. 802-805
Author(s):  
Jun Li Jia ◽  
Jin Hong Zhang ◽  
Guo Zhen Wang

Efficient secondary cooling water control level slab continuous casting process and quality are closely related. Casting solidification heat transfer model is the basis of process control and optimization, heat transfer model based on determining the secondary cooling system is the most widely used method for casting production process can be simulated. However, when considering the many factors affecting the production and input conditions change significantly, real-time and strain of this method is not guaranteed. Therefore, the artificial intelligence optimization algorithms such as genetic algorithms, neural networks, fuzzy controllers, introducing continuous casting secondary cooling water distribution and dynamics of optimal control methods, the rational allocation of caster secondary cooling water and dynamic control is important.


2016 ◽  
Vol 138 (2) ◽  
Author(s):  
Nick Brekke ◽  
Todd Otanicar ◽  
Drew DeJarnette ◽  
Parameswar Hari

A 2D heat transfer model of a hybrid photovoltaic/thermal (PV/T) system has been created. This paper investigates the impact of ideal filters to best accommodate for a nonuniform PV temperature along the length of the receiver. The proposed configuration consists of a GaAs cell laminated to an aluminum extrusion. The working fluid, a transparent high-temperature heat transfer fluid with suspended nanoparticles, flows through the hollow extrusion where it cools the PV cell before it is redirected in front of the cell acting as an optical filter. The model accounts for PV cell efficiency, temperature, and bandgap dependence, the details often neglected in prior works.


Author(s):  
Johnathon P. Putrus ◽  
Stanley T. Jones ◽  
Badih A. Jawad ◽  
Giscard Kfoury ◽  
Selin Arslan ◽  
...  

Thermal management systems (TMS) of armored ground vehicle designs are often incapable of sustained heat rejection during high tractive effort conditions and ambient conditions. Latent heat energy storage systems that utilize Phase Change Materials (PCMs) present an effective way of storing thermal energy and offer key advantages such as high-energy storage density, high heat of fusion values, and greater stability in temperature control. Military vehicles frequently undergo high-transient thermal loads and often do not provide adequate cooling for powertrain subsystems. This work outlines an approach to temporarily store excess heat generated by the transmission during high tractive effort situations through the use of a passive PCM retrofit thereby extending the operating time, reducing temperature transients, and limiting overheating. A numerical heat transfer model has been developed based on a conceptual vehicle transmission TMS. The model predicts the transmission fluid temperature response with and without a PCM retrofit. The developed model captures the physics of the phase change processes to predict the transient heat absorption and rejection processes. It will be used to evaluate the effectiveness of proposed candidate implementations and provide input for TMS evaluations. Parametric studies of the heat transfer model have been conducted to establish desirable structural morphologies and PCM thermophysical properties. Key parameters include surface structural characteristics, conduction enhancing material, surface area, and PCM properties such as melt temperature, heat of fusion, and thermal conductivity. To demonstrate proof-of-concept, a passive PCM enclosure has been designed to be integrated between a transmission bell housing and torque converter. This PCM-augmented module will temporarily strategically absorb and release heat from the system at a controlled rate. This allows surging fluid temperatures to be clamped below the maximum effective fluid temperature rating thereby increasing component life, reliability, and performance. This work outlines cooling system boundary conditions, mobility/thermal loads, model details, enclosure design characteristics, potential PCM candidates, design considerations, performance data, cooling system impacts, conclusions, and potential future work.


1975 ◽  
Vol 97 (2) ◽  
pp. 288-293 ◽  
Author(s):  
K. M. Atesmen

In the first part of this study, a one-dimensional quasi-steady-state heat transfer model is developed for an axial forced flow system in rotary combustion engines. This computer model is useful in optimizing the cooling system in accordance with the heat input from the combustion chambers. In the second part of this study, a two-dimensional quasi-steady-state heat transfer model is developed for an axial forced flow cooling system in a rotor housing in an effort to minimize the thermal stresses and the thermal distortions of the trochoidal surfaces. In the third part of this study, a two-dimensional transient heat transfer model is developed for an axial forced flow cooling system in a critical portion of the rotor housing in order to determine the critical thermal loads that occur in the through-bolts during the sudden acceleration of a cold rotating combustion engine.


2018 ◽  
Vol 1 (1) ◽  
pp. 142-150
Author(s):  
Murat Tunc ◽  
Ayse Nur Esen ◽  
Doruk Sen ◽  
Ahmet Karakas

A theoretical post-dryout heat transfer model is developed for two-phase dispersed flow, one-dimensional vertical pipe in a post-CHF regime. Because of the presence of average droplet diameter lower bound in a two-phase sparse flow. Droplet diameter is also calculated. Obtained results are compared with experimental values. Experimental data is used two-phase flow steam-water in VVER-1200, reactor coolant system, reactor operating pressure is 16.2 MPa. On heater rod surface, dryout was detected as a result of jumping increase of the heater rod surface temperature. Results obtained display lower droplet dimensions than the experimentally obtained values.


Sign in / Sign up

Export Citation Format

Share Document