Equivalent Elastic Constants of Truss Core Sandwich Plates

2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Hong-Xia Wang ◽  
Samuel W. Chung

A plate structure of a triangular truss core sandwiched by two panels is treated as an equivalent homogeneous laminated plate by obtaining equivalent anisotropic elastic constants. The equivalent elastic constants are obtained by considering generalized Hook’s law of a three dimensional elastic body with no a priori assumption and the equilibrium of a segment deformed by bending moments. To verify the accuracy of the equivalent elastic constants, a linear static analysis of sandwiched aluminum plates subjected to lateral pressure is carried out. The results of the finite element analysis applied to the equivalent laminated plates are compared with those of a NASTRAN analysis of the original structural layouts. The results are also compared with a closed-form solution, which simplifies the sandwiched plate as a homogeneous orthotropic thick plate continuum (Lok and Cheng, 2000, “Elastic Stiffness Properties and Behavior of Truss-Core Sandwich Panel,” J. Struct. Eng., 126(5), pp. 552–559). As the maximum deflections of three analyses agreed closely, one has assurance that the method of the homogeneous plate with equivalent elastic constants is valid and useful.

2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Isaiah Ramos ◽  
Young Ho Park ◽  
Jordan Ulibarri-Sanchez

In this paper, we developed an exact analytical 3D elasticity solution to investigate mechanical behavior of a thick multilayered anisotropic fiber-reinforced pressure vessel subjected to multiple mechanical loadings. This closed-form solution was implemented in a computer program, and analytical results were compared to finite element analysis (FEA) calculations. In order to predict through-thickness stresses accurately, three-dimensional finite element meshes were used in the FEA since shell meshes can only be used to predict in-plane strength. Three-dimensional FEA results are in excellent agreement with the analytical results. Finally, using the proposed analytical approach, we evaluated structural damage and failure conditions of the composite pressure vessel using the Tsai–Wu failure criteria and predicted a maximum burst pressure.


2000 ◽  
Vol 35 (4) ◽  
pp. 261-276 ◽  
Author(s):  
E. W O'Brien

Beneficial residual compressive stress is induced around fastener holes by the process of cold expansion in civil aircraft. Fatigue performance is enhanced by increasing the allowable fatigue stress levels which are accounted for in the design. Much work exists that explains both the cold-expansion process and its effects when applied to smaller diameter holes and smaller plate thicknesses, i.e. 12mm or less. Since the introduction of larger diameter holes and larger plate thicknesses of 25mm and greater to current large civil aircraft, investigations have revealed that the cold-expansion process has several unique features that are attributable to the larger size. While superficially the two scales of component may appear to have both static and dynamic similitude, in fact the scaling is not total when the complete manufacturing system is considered. All the dimensions are scaled up with the important exception of the flat portion of the mandrel; it is this easily missed feature that gives rise to the significant three-dimensional effect under investigation. This paper is written from an industrial perspective and reviews the result of experimental stress analyses that demonstrate the difference in the process between small and large holes. Strains were measured in the time domain and the strain progression against time indicates definite three-dimensional effects in the process which are compared with a closed-form solution and a three-dimensional finite element analysis.


Author(s):  
P.-S. Lam ◽  
Y. J. Chao ◽  
X.-K. Zhu ◽  
Y. Kim ◽  
R. L. Sindelar

Mechanical testing of A285 carbon steel, a storage tank material, was performed to develop fracture properties based on the constraint theory of fracture mechanics. A series of single edge-notched bend (SENB) specimen designs with various levels of crack tip constraint were used. The variation of crack tip constraint was achieved by changing the ratio of the initial crack length to the specimen depth. The test data show that the J-R curves are specimen-design-dependent, which is known as the constraint effect. A two-parameter fracture methodology is adopted to construct a constraint-modified J-R curve, which is a function of the constraint parameter, A2, while J remains the loading parameter. This additional fracture parameter is derived from a closed form solution and can be extracted from the finite element analysis for a specific crack configuration. Using this set of SENB test data, a mathematical expression representing a family of the J-R curves for A285 carbon steel can be developed. It is shown that the predicted J-R curves match well with the SENB data over an extensive amount of crack growth. In addition, this expression is used to predict the J-R curve of a compact tension specimen (CT), and reasonable agreement to the actual test data is achieved. To demonstrate its application in a flaw stability evaluation, a generic A285 storage tank with a postulated axial flaw is used. For a flaw length of 10% of the tank height, the predicted J-R curve is found to be similar to that for a SENB specimen with a short notch, which is in a state of low constraint. This implies that the use of a J-R curve from the ASTM (American Society for Testing and Materials) standard designs, which typically are high constraint specimens, may be overly conservative for analysis of fracture resistance of large structures.


2013 ◽  
Vol 856 ◽  
pp. 147-152
Author(s):  
S.H. Adarsh ◽  
U.S. Mallikarjun

Shape Memory Alloys (SMA) are promising materials for actuation in space applications, because of the relatively large deformations and forces that they offer. However, their complex behaviour and interaction of several physical domains (electrical, thermal and mechanical), the study of SMA behaviour is a challenging field. Present work aims at correlating the Finite Element (FE) analysis of SMA with closed form solutions and experimental data. Though sufficient literature is available on closed form solution of SMA, not much detail is available on the Finite element Analysis. In the present work an attempt is made for characterization of SMA through solving the governing equations by established closed form solution, and finally correlating FE results with these data. Extensive experiments were conducted on 0.3mm diameter NiTinol SMA wire at various temperatures and stress conditions and these results were compared with FE analysis conducted using MSC.Marc. A comparison of results from finite element analysis with the experimental data exhibits fairly good agreement.


2005 ◽  
Vol 4 (2) ◽  
Author(s):  
J. R. Zabadal ◽  
C. A. Poffal

Several analytical, numerical and hybrid methods are being used to solve diffusion and diffusion advection problems. In this work, a closed form solution of the three-dimensional diffusion advection equation in a Cartesian coordinate system is obtained by applying rules, based on the Lie symmetries, to manipulate the exponential of the differential operators that appear in its formal solution. There are many advantages of applying these rules: the increase in processing velocity so that the solution may be obtained in real time, the reduction in the amount of memory required to perform the necessary tasks in order to obtain the solution, since the analytical expressions can be easily manipulated in post-processing and also the discretization of the domain may not be necessary in some cases, avoiding the use of mean values for some parameters involved. These rules yield good results when applied to obtain solutions for problems in fluid mechanics and in quantum mechanics. In order to show the performance of the method, a one-dimensional scenario of the pollutant dispersion in a stable boundary layer is simulated, considering that the horizontal component of the velocity field is dominant and constant, disregarding the other components. The results are compared with data available in the literature.


1995 ◽  
Vol 80 (2) ◽  
pp. 424-426
Author(s):  
Frank O'Brien ◽  
Sherry E. Hammel ◽  
Chung T. Nguyen

The authors' Poisson probability method for detecting stochastic randomness in three-dimensional space involved the need to evaluate an integral for which no appropriate closed-form solution could be located in standard handbooks. This resulted in a formula specifically calculated to solve this integral in closed form. In this paper the calculation is verified by the method of mathematical induction.


2005 ◽  
Vol 4 (2) ◽  
pp. 197
Author(s):  
J. R. Zabadal ◽  
C. A. Poffal

Several analytical, numerical and hybrid methods are being used to solve diffusion and diffusion advection problems. In this work, a closed form solution of the three-dimensional diffusion advection equation in a Cartesian coordinate system is obtained by applying rules, based on the Lie symmetries, to manipulate the exponential of the differential operators that appear in its formal solution. There are many advantages of applying these rules: the increase in processing velocity so that the solution may be obtained in real time, the reduction in the amount of memory required to perform the necessary tasks in order to obtain the solution, since the analytical expressions can be easily manipulated in post-processing and also the discretization of the domain may not be necessary in some cases, avoiding the use of mean values for some parameters involved. These rules yield good results when applied to obtain solutions for problems in fluid mechanics and in quantum mechanics. In order to show the performance of the method, a one-dimensional scenario of the pollutant dispersion in a stable boundary layer is simulated, considering that the horizontal component of the velocity field is dominant and constant, disregarding the other components. The results are compared with data available in the literature.


2019 ◽  
Vol 484 (6) ◽  
pp. 672-677
Author(s):  
A. V. Vokhmintcev ◽  
A. V. Melnikov ◽  
K. V. Mironov ◽  
V. V. Burlutskiy

A closed-form solution is proposed for the problem of minimizing a functional consisting of two terms measuring mean-square distances for visually associated characteristic points on an image and meansquare distances for point clouds in terms of a point-to-plane metric. An accurate method for reconstructing three-dimensional dynamic environment is presented, and the properties of closed-form solutions are described. The proposed approach improves the accuracy and convergence of reconstruction methods for complex and large-scale scenes.


Author(s):  
bohua sun

The formulation used by most of the studies on an elastic torus are either Reissner mixed formulation or Novozhilov's complex-form one, however, for vibration and some displacement boundary related problem of a torus, those formulations face a great challenge. It is highly demanded to have a displacement-type formulation for the torus. In this paper, I will carry on my previous work [ B.H. Sun, Closed-form solution of axisymmetric slender elastic toroidal shells. J. of Engineering Mechanics, 136 (2010) 1281-1288.], and with the help of my own maple code, I am able to simulate some typical problems and free vibration of the torus. The numerical results are verified by both finite element analysis and H. Reissner's formulation. My investigations show that both deformation and stress response of an elastic torus are sensitive to the radius ratio, and suggest that the analysis of a torus should be done by using the bending theory of a shell, and also reveal that the inner torus is stronger than outer torus due to the property of their Gaussian curvature. Regarding the free vibration of a torus, our analysis indicates that both initial in u and w direction must be included otherwise will cause big errors in eigenfrequency. One of the most intestine discovery is that the crowns of a torus are the turning point of the Gaussian curvature at the crown where the mechanics' response of inner and outer torus is almost separated.


Sign in / Sign up

Export Citation Format

Share Document