A Heat Transfer Model Based on Finite Difference Method for Grinding

Author(s):  
Bin Shen ◽  
Albert J. Shih ◽  
Guoxian Xiao

A heat transfer model for grinding has been developed based on the finite difference method (FDM). The proposed model can solve transient heat transfer problems in grinding, and has the flexibility to deal with different boundary conditions. The model is first validated by comparing it with the traditional heat transfer model for grinding which assumes the semiinfinite workpiece size and adiabatic boundary conditions. Then it was used to investigate the effects of workpiece size, feed rate, and cooling boundary conditions. Simulation results show that when the workpiece is short or the feed rate is low, transient heat transfer becomes more dominant during grinding. Results also show that cooling in the grinding contact zone has much more significant impact on the reduction of workpiece temperature than that in the leading edge or trailing edge. The model is further applied to investigate the convection heat transfer at the workpiece surface in wet and minimum quantity lubrication (MQL) grinding. Based on the assumption of linearly varying convection heat transfer coefficient in the grinding contact zone, FDM model is able to calculate convection coefficient from the experimentally measured grinding temperature profile. The average convection heat transfer coefficient in the grinding contact zone was estimated as 4.2 × 105 W/m2-K for wet grinding and 2.5 × 104 W/m2-K for MQL grinding using vitrified bond CBN wheels.

Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 716
Author(s):  
Saulius Pakalka ◽  
Kęstutis Valančius ◽  
Giedrė Streckienė

Latent heat thermal energy storage systems allow storing large amounts of energy in relatively small volumes. Phase change materials (PCMs) are used as a latent heat storage medium. However, low thermal conductivity of most PCMs results in long melting (charging) and solidification (discharging) processes. This study focuses on the PCM melting process in a fin-and-tube type copper heat exchanger. The aim of this study is to define analytically natural convection heat transfer coefficient and compare the results with experimental data. The study shows how the local heat transfer coefficient changes in different areas of the heat exchanger and how it is affected by the choice of characteristic length and boundary conditions. It has been determined that applying the calculation method of the natural convection occurring in the channel leads to results that are closer to the experiment. Using this method, the average values of the heat transfer coefficient (have) during the entire charging process was obtained 68 W/m2K, compared to the experimental result have = 61 W/m2K. This is beneficial in the predesign stage of PCM-based thermal energy storage units.


2013 ◽  
Vol 448-453 ◽  
pp. 3316-3319
Author(s):  
Chuang Sun ◽  
Yang Zhao ◽  
De Fu Li ◽  
Qing Ai ◽  
Xin Lin Xia

According to the view of heat transfer, the process of the fluid flow with high temperature and high speed over a flat plate may be considered as the heat transfer process within a compressible thermal boundary layer. Based on the numerical results of thermal isolation assumption, combining the temperature comparison with modification method, a coupled method of convection heat transfer coefficient with temperature field of the plate is established, and the characteristics of the thermal response for the flat plate is dominated. Take some ribbed plates as instances, the convection heat transfer coefficient and temperature field of the plate are simulated through the provided coupled method. The results show that, not only the position and materials of the plate influence the convection heat transfer coefficient, but also the time.


Sign in / Sign up

Export Citation Format

Share Document