scholarly journals A Study of Critical Heat Flux During Flow Boiling in Microchannel Heat Sinks

2011 ◽  
Vol 134 (1) ◽  
Author(s):  
Tailian Chen ◽  
Suresh V. Garimella

The cooling capacity of two-phase transport in microchannels is limited by the occurrence of critical heat flux (CHF). Due to the nature of the phenomenon, it is challenging to obtain reliable CHF data without causing damage to the device under test. In this work, the critical heat fluxes for flow boiling of FC-77 in a silicon thermal test die containing 60 parallel microchannels were measured at five total flow rates through the microchannels in the range of 20–80 ml/min. CHF is caused by dryout at the wall near the exit of the microchannels, which in turn is attributed to the flow reversal upstream of the microchannels. The bubbles pushed back into the inlet plenum agglomerate; the resulting flow blockage is a likely cause for the occurrence of CHF which is marked by an abrupt increase in wall temperature near the exit and an abrupt decrease in pressure drop across the microchannels. A database of 49 data points obtained from five experiments in four independent studies with water, R-113, and FC-77 as coolants was compiled and analyzed. It is found that the CHF has a strong dependence on the coolant, the flow rate, and the area upon which the heat flux definition is based. However, at a given flow rate, the critical heat input (total heat transfer rate to the coolant when CHF occurs) depends only on the coolant and has minimal dependence on the details of the microchannel heat sink (channel size, number of channels, substrate material, and base area). The critical heat input for flow boiling in multiple parallel microchannels follows a well-defined trend with the product of mass flow rate and latent heat of vaporization. A power-law correlation is proposed which offers a simple, yet accurate method for predicting the CHF. The thermodynamic exit quality at CHF is also analyzed and discussed to provide insights into the CHF phenomenon in a heat sink containing multiple parallel microchannels.

Author(s):  
Tailian Chen ◽  
Suresh V. Garimella

The cooling capacity of two-phase transport in microchannels is limited by the occurrence of critical heat flux (CHF). Due to the nature of the phenomenon, it is challenging to obtain reliable CHF data without causing damage to the device under test. In this work, the critical heat fluxes for flow boiling of FC-77 in a silicon thermal test die containing 60 parallel microchannels were measured at five total flow rates through the microchannels in the range of 20–80 ml/min. CHF is caused by dryout at the wall near the exit of the microchannels, which in turn is attributed to the flow reversal upstream of the microchannels. The bubbles pushed back into the inlet plenum agglomerate; the resulting flow blockage is a likely cause for the occurrence of CHF which is marked by an abrupt increase in wall temperature near the exit and an abrupt decrease in pressure drop across the microchannels. A database of 49 data points obtained from five experiments in four independent studies with water, R-113, and FC-77 as coolants was compiled and analyzed. It is found that the CHF has a strong dependence on the coolant, the flow rate, and the area upon which the flux definition is based. However, at a given flow rate, the critical heat input (total heat transfer rate to the coolant when CHF occurs) depends only on the coolant and has minimal dependence on the details of the microchannel heat sink (channel size, number of channels, substrate material, and base area). The critical heat input for flow boiling in multiple parallel microchannels follows a well-defined trend with the product of mass flow rate and latent heat of vaporization. A power-law correlation is proposed which offers a simple, yet accurate method for predicting the CHF. The thermodynamic exit quality at CHF is also analyzed and discussed to provide insights into the CHF phenomenon in a heat sink containing multiple parallel microchannels.


Author(s):  
Tailian Chen ◽  
Suresh V. Garimella

This paper presents an experimental study of flow boiling heat transfer in a microchannel heat sink. The dielectric fluid Fluorinert FC-77 is used as the boiling liquid after it is fully degassed. The experiments were performed at three flow rates ranging from 30 to 50 ml/min. The heat transfer coefficients, as well as the critical heat flux, were found to increase with flow rate. Wall temperature measurements at three locations (near the inlet, near the exit, and in the middle of heat sink) reveal that wall dryout first occurs near the exit of the microchannels. The ratio of heat transfer rate under critical heat flux conditions to the limiting evaporation rate was found to decrease with increasing flow rate, asymptotically approaching unity. Predictions from a number of correlations for nucleate boiling heat transfer in the literature are compared against the experimental results to identify those that provide a good match. The results of this work provide guidelines for the thermal design of microchannel heat sinks in two-phase flow.   This paper was also originally published as part of the Proceedings of the ASME 2005 Heat Transfer Summer Conference.


2005 ◽  
Vol 127 (1) ◽  
pp. 101-107 ◽  
Author(s):  
A. E. Bergles ◽  
S. G. Kandlikar

The critical heat flux (CHF) limit is an important consideration in the design of most flow boiling systems. Before the use of microchannels under saturated flow boiling conditions becomes widely accepted in cooling of high-heat-flux devices, such as electronics and laser diodes, it is essential to have a clear understanding of the CHF mechanism. This must be coupled with an extensive database covering a wide range of fluids, channel configurations, and operating conditions. The experiments required to obtain this information pose unique challenges. Among other issues, flow distribution among parallel channels, conjugate effects, and instrumentation need to be considered. An examination of the limited CHF data indicates that CHF in parallel microchannels seems to be the result of either an upstream compressible volume instability or an excursive instability rather than the conventional dryout mechanism. It is expected that the CHF in parallel microchannels would be higher if the flow is stabilized by an orifice at the entrance of each channel. The nature of CHF in microchannels is thus different than anticipated, but recent advances in microelectronic fabrication may make it possible to realize the higher power levels.


Author(s):  
Daxiang Deng ◽  
Qingsong Huang ◽  
Yanlin Xie ◽  
Wei Zhou ◽  
Xiang Huang ◽  
...  

Two-phase boiling in advanced microchannel heat sinks offers an efficient and attractive solution for heat dissipation of high-heat-flux devices. In this study, a type of reentrant copper microchannels was developed for heat sink cooling systems. It consisted of 14 parallel Ω-shaped reentrant copper microchannels with a hydraulic diameter of 781μm. Two-phase pressure drop characteristics were comprehensively accessed via flow boiling tests. Both deionized water and ethanol tests were conducted at inlet subcooling of 10°C and 40°C, mass fluxes of 125–300kg/m2·s, and a wide range of heat fluxes and vapor qualities. The effects of heat flux, mass flux, inlet subcoolings and coolants on the two-phase pressure drop were systematically explored. The results show that the two-phase pressure drop of reentrant copper microchannels generally increased with increasing heat fluxes and vapor qualities. The role of mass flux and inlet temperatures was dependent on the test coolant. The water tests presented smaller pressure drop than the ethanol ones. These results provide critical experimental information for the development of microchannel heat sink cooling systems, and are of considerable practical relevance.


2017 ◽  
Vol 9 (2) ◽  
pp. 168781401668902 ◽  
Author(s):  
Ben-Ran Fu ◽  
Shan-Yu Chung ◽  
Wei-Jen Lin ◽  
Lei Wang ◽  
Chin Pan

A heat sink with convective boiling in micro- or mini-channels is with great potential to meet the requirement of the high heat dissipation of the electronic devices. This study investigates the flow boiling of HFE-7100, having a suitable boiling temperature at atmospheric pressure and dielectric property, in the minichannel heat sink with the modified surface (namely, the saw-tooth structure). The effect of the system pressure on the boiling characteristics was also studied. The results reveal that the critical heat flux can be significantly improved by introducing the saw-tooth structures on the channel surface or boosting the system pressure as well as by increasing the mass flux. Compared to the non-modified channel, the enhancements of the critical heat flux for the parallel and counter saw-tooth channels are 44% and 36%, respectively, at the small mass flux. The boiling visualization further indicates that the minichannels with the saw-tooth structures interrupt the boundary layer and restrain the coalescence of the bubble, which may be the reason for the critical heat flux enhancement. Moreover, the degree of the critical heat flux enhancement, contributed by the saw-tooth modification of the channel, decreases with an increase in the mass flux.


Author(s):  
Wai Keat Kuan ◽  
Satish G. Kandlikar

The present work is aimed toward understanding the effect of flow boiling stability on critical heat flux (CHF) with Refrigerant-123 (R-123) in microchannel passages. Experimental data and theoretical model to predict the CHF are the focus of this work. The experimental test section has six parallel microchannels with each having a cross sectional area of 1054 × 157 μm2. The effect of flow instabilities in microchannels is investigated using flow restrictors at the inlet of each microchannel to stabilize the flow boiling process and avoid the backflow phenomena. This technique resulted in successfully stabilizing the flow boiling process as seen through a high-speed camera. The present CHF result is found to correlate to mean absolute error (MAE) of 24.1% with a macroscale empirical equation by Katto [13]. A theoretical analysis of flow boiling phenomena revealed that the ratio of evaporation momentum to surface tension forces is an important parameter. For the first time, a theoretical CHF model is proposed using these underlying forces to represent CHF mechanism in microchannels, and its correlation agrees with the experimental data with MAE of 2.5%.


2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Wai Keat Kuan ◽  
Satish G. Kandlikar

The present work is aimed toward understanding the effect of flow boiling stability on critical heat flux (CHF) with Refrigerant 123 (R-123) and water in microchannel passages. Experimental data and theoretical model to predict the CHF are the focus of this work. The experimental test section has six parallel microchannels, with each having a cross-sectional area of 1054×157μm2. The effect of flow instabilities in microchannels is investigated using flow restrictors at the inlet of each microchannel to stabilize the flow boiling process and avoid the backflow phenomena. This technique resulted in successfully stabilizing the flow boiling process. The present experimental CHF results are found to correlate best with existing correlations to overall mean absolute errors (MAEs) of 33.9% and 14.3% with R-123 and water, respectively, when using a macroscale rectangular equation by Katto (1981, “General Features of CHF of Forced Convection Boiling in Uniformly Heated Rectangular Channels,” Int. J. Heat Mass Transfer, 24, pp. 1413–1419). A theoretical analysis of flow boiling phenomena revealed that the ratio of evaporation momentum to surface tension forces is an important parameter. A theoretical CHF model is proposed using these underlying forces to represent CHF mechanism in microchannels, and its correlation agrees with the experimental data with MAE of 2.5%.


2006 ◽  
Vol 129 (7) ◽  
pp. 844-851 ◽  
Author(s):  
Ali Koşar ◽  
Yoav Peles

Critical heat flux (CHF) of R-123 in a silicon-based microchannel heat sink was investigated at exit pressures ranging from 227kPato520kPa. Critical heat flux data were obtained over effective heat fluxes ranging from 53W∕cm2to196W∕cm2 and mass fluxes from 291kg∕m2sto1118kg∕m2s. Flow images and high exit qualities suggest that dryout is the leading CHF mechanism. The effect of mass velocity, exit quality, and system pressure were also examined, and a new correlation is presented to represent the effect of these parameters.


Sign in / Sign up

Export Citation Format

Share Document