Numerical Simulation of Low Specific Speed American Petroleum Institute Pumps in Part-Load Operation and Comparison With Test Rig Results

2012 ◽  
Vol 134 (2) ◽  
Author(s):  
Helmut Benigni ◽  
Helmut Jaberg ◽  
Hoi Yeung ◽  
Tony Salisbury ◽  
Owen Berry ◽  
...  

A low specific speed centrifugal pump is investigated by means of numerical simulation, especially in deep part-load operation. The 3D computational fluid dynamics (CFD) model includes the front and back cavities, a 360 deg impeller and a double volute, as well as suction and pressure pipes. Stationary calculations show a strong clocking effect and lead to an overprediction of the head close to zero flow rate. A one-dimensional estimation of the head at the closed valve operation point is compared to the 3D CFD results and also a series of test rig results. In a second step, the whole head curve is calculated by a fully transient calculation using the shear stress transport–scale-adaptive simulation (SST–SAS) turbulence model. For the net positive suction head (NPSH) estimation, the histogram method is applied providing good correlation to the test rig measurement—as do the head curve and the efficiency.

2021 ◽  
Vol 9 (2) ◽  
pp. 121
Author(s):  
Yang Yang ◽  
Ling Zhou ◽  
Hongtao Zhou ◽  
Wanning Lv ◽  
Jian Wang ◽  
...  

Marine centrifugal pumps are mostly used on board ship, for transferring liquid from one point to another. Based on the combination of orthogonal testing and numerical simulation, this paper optimizes the structure of a drainage trough for a typical low-specific speed centrifugal pump, determines the priority of the various geometric factors of the drainage trough on the pump performance, and obtains the optimal impeller drainage trough scheme. The influence of drainage tank structure on the internal flow of a low-specific speed centrifugal pump is also analyzed. First, based on the experimental validation of the initial model, it is determined that the numerical simulation method used in this paper is highly accurate in predicting the performance of low-specific speed centrifugal pumps. Secondly, based on the three factors and four levels of the impeller drainage trough in the orthogonal test, the orthogonal test plan is determined and the orthogonal test results are analyzed. This work found that slit diameter and slit width have a large impact on the performance of low-specific speed centrifugal pumps, while long and short vane lap lengths have less impact. Finally, we compared the internal flow distribution between the initial model and the optimized model, and found that the slit structure could effectively reduce the pressure difference between the suction side and the pressure side of the blade. By weakening the large-scale vortex in the flow path and reducing the hydraulic losses, the drainage trough impellers obtained based on orthogonal tests can significantly improve the hydraulic efficiency of low-specific speed centrifugal pumps.


2021 ◽  
Author(s):  
Erik Vermunt ◽  
Martijn Van Der Schoot ◽  
Bruurs Bruurs ◽  
Bart Van Esch

2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Li Zhang ◽  
Hui Li ◽  
Hong Xu ◽  
Weidong Shi ◽  
Yang Yang ◽  
...  

In order to analyze the effect of impeller with different slot widths on the performance of the low-specific-speed centrifugal pumps, based on the impeller of a single-stage pump with the specific speed of 21, two gap drainage schemes with slot widths of 1.5 mm and 6.0 mm, slot diameter of 180 mm, and lap length of 5 mm were designed. Both experimental and numerical simulation methods were applied to compare the steady performance, which includes the head, efficiency, and the internal flow field distribution, and the unsteady pressure pulsation performance between new designed pumps and the original pump. The results show that gap drainage would cause a certain degree of head reduction, but a smaller slot width could achieve higher efficiency. Meanwhile, a reasonable open seam scheme can reduce the development of pressure pulsation, which provides experience and reference for the stable operation of low-specific-speed centrifugal pumps.


2015 ◽  
Vol 9 (1) ◽  
pp. 594-600
Author(s):  
Jianhua Liu ◽  
Xiangyang Zhao ◽  
Miaoxin Xiao

In this work, the comparative study has been done for five kinds of design methods of the low specific speed centrifugal pump impeller adopted numerical simulation method by software of Fluent, so that the problems can be solved. Many different design methods exists for the low specific speed centrifugal pump impeller, which caused the design effect difficult to control. The numerical simulation method based on the Reynolds time averaged N-S equations (RANS) and RNG κ-ε turbulence models. Results revealed the inner flow pattern of these impeller, and these results were verified by external characteristic experiment. The research results showed that the design method, which adopted compound impeller with short blades and these short blades turned to the suction surface of long blades. Results proved that its flow distribution is even and external characteristic curve is more ideal.


Author(s):  
Cong Wang ◽  
Yongxue Zhang ◽  
Hucan Hou ◽  
Zhiyi Yuan

Low efficiency and bad cavitation performance restrict the development of the ultra-low specific-speed centrifugal pump (ULSSCP). In this research, combined turbulent boundary layer theory with two-dimension design and two-dimension viscous hydraulic design method has been proposed to redesign a ULSSCP. Through the solution of the displacement thickness in the boundary layer, a less curved blade profile with a larger outlet angle was obtained. Then the hydraulic and cavitation performance of the reference pump and the designed pump were numerically studied. The comparison of performance of the reference pump calculated by the numerical and experimental results revealed a better agreement. Research shows that the average hydraulic efficiency and head of the designed pump improve by 2.9% and 3.3%, respectively. Besides, the designed pump has a better cavitation performance. Finally, through the internal flow analysis with entropy production diagnostic model, a 24.8% drop in head loss occurred in the designed pump.


Author(s):  
Hucan Hou ◽  
Yongxue Zhang ◽  
Xin Zhou ◽  
Zhitao Zuo ◽  
Haisheng Chen

The ultra-low specific speed centrifugal pump has been widely applied in aerospace engineering, metallurgy, and other industrial fields. However, its hydraulic design lacks specialized theory and method. Moreover, the impeller and volute are designed separately without considering their coupling effect. Therefore, the optimal design is proposed in this study based on the local entropy production theory. Four geometrical parameters are selected to establish orthogonal design schemes including blade outlet setting angle, wrapping angle volute inlet width, and throat area. Subsequently, a 3D steady flow with Reynolds stress turbulent model and energy equation model is numerically conducted and the entropy production is calculated by a user-defined function code. The range analysis is made to identify the optimal scheme indicating that the combination of local entropy production and orthogonal design is feasible on pump optimization. The optimal pump is visibly improved with an increase of 1.08% in efficiency. Entropy production is decreased by 16.75% and 6.03% in impeller and volute, respectively. High energy loss areas are captured and explained in terms of helical vortex and wall friction, and the turbulent and wall entropy production are respectively reduced by 3.82% and 14.34% for the total pump.


Author(s):  
M Sreekanth ◽  
R Sivakumar ◽  
M Sai Santosh Pavan Kumar ◽  
K Karunamurthy ◽  
MB Shyam Kumar ◽  
...  

This paper presents a detailed and objective review of regenerative flow turbomachines, namely pumps, blowers and compressors. Several aspects of turbomachines like design and operating parameters, working principle, flow behaviour, performance parameters and analytical and Computational Fluid Dynamics (CFD) related details have been reviewed and summarized. Experimental work has been put in perspective and the most useful results for optimized performance have been presented. Consolidated plots of specific speed-specific diameter have been plotted which can be helpful in the early stages of design. Industrial outlook involving details of suppliers from various parts of the world, their product description and applications too are included. Finally, future research work to be carried out to make these machines widespread is suggested. This review is targeted at designer engineers who would need quantitative data to work with.


Sign in / Sign up

Export Citation Format

Share Document