Swing Dynamics and Input-Shaping Control of Human-Operated Double-Pendulum Boom Cranes

Author(s):  
Ehsan Maleki ◽  
William Singhose

Boom cranes are used for numerous material-handling and manufacturing processes in factories, shipyards, and construction sites. All cranes lift their payloads by hoisting them up using overhead suspension cables. Boom cranes move payloads by slewing their base about a vertical axis, luffing their boom in and out from the base, and changing the length of the suspension cable. These motions induce payload oscillation. The problem of payload oscillation becomes more challenging when the payload exhibits double-pendulum dynamics that produce two varying frequencies of oscillation. This paper studies the swing dynamics of such cranes. It also applies input shaping to reduce the two-mode oscillatory dynamics. Experiments confirm several of the interesting dynamic effects.

Author(s):  
William Singhose ◽  
Dooroo Kim ◽  
Michael Kenison

Large amplitude oscillation of crane payloads is detrimental to safe and efficient operation. Under certain conditions, the problem is compounded when the payload creates a double-pendulum effect. Most crane control research to date has focused on single-pendulum dynamics. Several researchers have shown that single-mode oscillations can be greatly reduced by properly shaping the inputs to the crane motors. This paper builds on those previous developments to create a method for suppressing double-pendulum payload oscillations. The input shaping controller is designed to have robustness to changes in the two operating frequencies. Experiments performed on a portable bridge crane are used to verify the effectiveness of this method and the robustness of the input shaper.


Author(s):  
Joshua Vaughan ◽  
William Singhose ◽  
Paulo Debenest ◽  
Edwardo Fukushima ◽  
Shigeo Hirose

Cranes are used extensively throughout the world in a wide variety of construction and material handling applications. The speed at which these cranes are operated is limited by payload oscillation. Input shaping is one method that reduces this oscillation, allowing higher speeds and improving operational efficiency. Another method to improve the operational capabilities of cranes is to allow base motion. This paper presents initial experimental results from a portable, mobile tower crane. A theoretical model of the crane is presented and experimentally verified. The oscillatory dynamics of the crane are highlighted and controllers to combat these unwanted dynamics are presented.


Author(s):  
Dooroo Kim ◽  
William Singhose

Oscillation of crane payloads makes it challenging to manipulate payloads quickly, accurately, and safely. The problem is compounded when the payload creates a double-pendulum effect. This paper evaluates an input-shaping control method for reducing double-pendulum oscillations. Human operator performance testing on a 10-ton industrial bridge crane is used to verify the effectiveness and robustness of the method. The tests required the operators to drive the crane numerous times over a period of eight days. Data from these experiments show that human operators perform manipulation tasks much faster and safer with the proposed control scheme. Furthermore, considerably less operator effort is required when input shaping is used to limit the oscillation. These experiments also show that significant learning occurred when operators did not have the aid of input shaping. However, the performance never approached that achieved with input shaping without any training. With input shaping enabled, only moderate learning occurred because operators were able to drive the crane near its theoretical limit during their first tests.


Author(s):  
Jisup Yoon ◽  
William Singhose ◽  
Joshua Vaughan ◽  
Gabriel Ramirez ◽  
Michael Kim ◽  
...  

The natural sway of crane payloads is detrimental to safe and efficient operation. Most crane control research has focused on oscillation induced by motion of the overhead trolley that is perpendicular to the vertical suspension cables. Little consideration has been given to bouncing oscillation in the hoist direction and pitching oscillation with respect to mass center of the payload. These dynamic effects arise in cases when the suspension cables are very long. These oscillations may interfere with the ability of the crane operators to accurately unload the payload at its desired position and orientation. This paper presents a method for generating shaped commands that suppress payload oscillations of bouncing and pitching. Theoretical models are initially used to develop and evaluate the input-shaping control algorithm. Then, experiments performed on a portable tower crane are used to demonstrate the improved response provided by the proposed approach.


Author(s):  
Raymond Manning ◽  
Jeffrey Clement ◽  
Dooroo Kim ◽  
William Singhose

The large-amplitude and lightly-damped oscillation of crane payloads is detrimental to safe and efficient operation. The problem is further complicated when the payload creates a double-pendulum effect. Previous researches have shown that single-mode oscillations can be greatly reduced by properly shaping the inputs to the crane motors. This paper builds on previous developments by thoroughly describing the double-pendulum dynamic effects as a function of payload parameters and the crane configuration. Furthermore, an input-shaping control method is developed to suppress double-pendulum oscillations created by a payload with distributed-mass properties. Experiments performed on a 10-ton industrial bridge crane verify the effectiveness of the method. A critical aspect of the testing was human operator studies, wherein numerous operators utilized the input-shaping controller to perform manipulation tasks. The performance improvements provided by the input-shaping controller, as well as operator learning effects, are reported.


Author(s):  
Robert Mar ◽  
Anurag Goyal ◽  
Vinh Nguyen ◽  
Tianle Yang ◽  
William Singhose

A control system combining input shaping and feedback is applied to a double-pendulum bridge crane subjected to external disturbances. The external disturbances represent naturally occurring forces, such as gusting winds. The proposed control method achieves fast point-to-point response similar to open-loop input-shaping control. It also minimizes transient deflections and disturbance-induced residual swing using the feedback control. Effects of parameters such as the mass ratio of the double-pendulum, suspension length ratio, and the traveled distance were studied via numerical simulation and hardware experiments. The controller effectively suppresses the disturbances and is robust to modeling uncertainties and task variations.


2011 ◽  
Vol 121-126 ◽  
pp. 2676-2680
Author(s):  
Ming Xiao Dong ◽  
Rui Chuan Li ◽  
Qin Zu Xu

A poorly designed control system can lead to excessive residual vibration and long setting time. This paper investigates the effect of input shaping on control efficiency. To perform this investigation, we design a PD controller combined with input shaping for an inertia plant. We then subject it to four standard types of inputs. The responses of the control systems are described by analytical expressions. The performances of PD control and PD combined with input-shaping control are thoroughly analyzed and compared. Simulation results show that PD feedback control enhanced with input shaping minimizes overshoot and setting time.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
La Duc Viet ◽  
Youngjin Park

While the crane control problem is often approached by applying a certain active control command to some parts of the crane, this paper proposes a cable-passive damper system to reduce the vibration of a four-cable suspended crane spreader. The residual sway and skew motions of a crane spreader always produce the angle deflections between the crane cables and the crane spreader. The idea in this paper is to convert those deflections into energy dissipated by the viscous dampers, which connect the cables and the spreader. The proposed damper system is effective in reducing spreader sway and skew motions. Moreover, the optimal damping coefficient can be found analytically by minimizing the time integral of system energy. The numerical simulations show that the proposed passive system can assist the input shaping control of the trolley motion in reducing both sway and skew responses.


2016 ◽  
Vol 32 (1) ◽  
pp. 75-90 ◽  
Author(s):  
Quoc Chi Nguyen ◽  
Ha Quang Thinh Ngo

In this paper, three control algorithms based on input shaping method are developed to suppress the residual vibration of a flexible beam. The flexible beam is modeled as an under-damped system. Three input shapers, ZV, ZVD, and ZVDD, are used to control the flexible beam. The three control algorithms are implemented by using the Mechatrolink-III motion system. The experiments are performed to verify the effectiveness of the three control algorithms.


Sign in / Sign up

Export Citation Format

Share Document