scholarly journals Multiscale Model Predicts Tissue-Level Failure From Collagen Fiber-Level Damage

2012 ◽  
Vol 134 (9) ◽  
Author(s):  
Mohammad F. Hadi ◽  
Edward A. Sander ◽  
Victor H. Barocas

Excessive tissue-level forces communicated to the microstructure and extracellular matrix of soft tissues can lead to damage and failure through poorly understood physical processes that are multiscale in nature. In this work, we propose a multiscale mechanical model for the failure of collagenous soft tissues that incorporates spatial heterogeneity in the microstructure and links the failure of discrete collagen fibers to the material response of the tissue. The model, which is based on experimental failure data derived from different collagen gel geometries, was able to predict the mechanical response and failure of type I collagen gels, and it demonstrated that a fiber-based rule (at the micrometer scale) for discrete failure can strongly shape the macroscale failure response of the gel (at the millimeter scale). The model may be a useful tool in predicting the macroscale failure conditions for soft tissues and engineered tissue analogs. In addition, the multiscale model provides a framework for the study of failure in complex fiber-based mechanical systems in general.

2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Mohammad F. Hadi ◽  
Victor H. Barocas

A tissue's microstructure determines its failure properties at larger length scales, however, the specific relationship between microstructure and macroscopic failure in native and engineered soft tissues (such as capsular ligaments, aortic aneurysms, or vascular grafts) has proven elusive. In this study, variations in the microscale fiber alignment in collagen gel tissue analogs were modeled in order to understand their effects on macroscale damage and failure outcomes. The study employed a multiscale finite-element (FE) model for damage and failure in collagen-based materials. The model relied on microstructural representative volume elements (RVEs) that consisted of stochastically-generated networks of discrete type-I collagen fibers. Fiber alignment was varied within RVEs and between layers of RVEs in a macroscopic FE model of a notched dogbone geometry. The macroscale stretch and the microscale response of fibers for each of the differently aligned cases were compared as the dogbone was uniaxially extended to failure. Networks with greater fiber alignment parallel to the direction of extension failed at smaller strains (with a 6–22% reduction in the Green strain at failure), however, at greater grip forces (a 28–60% increase) than networks with fibers aligned perpendicular to the extension. Alternating layers of crisscrossed network alignments (aligned ±45 deg to the direction of extension) failed at smaller strains but at greater grip forces than those created using one fiber alignment type. In summary, variations in microscale structure via fiber alignment produced different macroscale failure trends. To conclude, these findings may be significant in the realm of tissue engineering and in soft tissue biomechanics.


Development ◽  
1988 ◽  
Vol 102 (3) ◽  
pp. 605-622 ◽  
Author(s):  
G. Greenburg ◽  
E.D. Hay

In considering the mechanism of transformation of epithelium to mesenchyme in the embryo, it is generally assumed that the ability to give rise to fibroblast-like cells is lost as epithelia mature. We reported previously that a definitive embryonic epithelium, that of the anterior lens, gives rise to freely migrating mesenchyme-like cells when suspended in type I collagen matrices. Here, we show that a highly differentiated epithelium that expresses cytokeratin changes to a vimentin cytoskeleton and loses thyroglobulin during epithelial-mesenchymal transformation induced by suspension in collagen gel. Using dispase and collagenase, we isolated adult thyroid follicles devoid of basal lamina and mesenchyme, and we suspended the follicles in 3D collagen gels. Cells bordering the follicle lumen retain epithelial polarity and thyroid phenotype, but basal cell surface organization is soon modified as a result of tissue multilayering and elongation of basal cells into the collagenous matrix. Cytodifferentiation, determined by thyroglobulin immunoreactivity, is lost as the basal epithelial cells move into the matrix after 3–4 days in collagen. By TEM, it can be seen that the elongating cells acquire pseudopodia, filopodia and mesenchyme-like nuclei and RER. Immunofluorescence examination of intermediate filaments showed that freshly isolated follicles and follicles cultured on planar substrata react only with anticytokeratin. However, all of the mesenchyme-like cells express vimentin and they gradually lose cytokeratin. These results suggest that vimentin may be necessary for cell functions associated with migration within a 3D matrix. The mesenchymal cells do not revert to epithelium when grown on planar substrata and the transformation of epithelium to mesenchyme-like cells does not occur within basement membrane gels. The results are relevant to our understanding of the initiation of epithelial-mesenchymal transformation in the embryo and the genetic mechanisms controlling cell shape, polarity and cytoskeletal phenotype.


1985 ◽  
Vol 228 (2) ◽  
pp. 463-469 ◽  
Author(s):  
G K Hunter ◽  
B L Allen ◽  
M D Grynpas ◽  
P T Cheng

Crystal growth in native collagen gels has been used to determine the role of extracellular matrix macromolecules in biological calcification phenomena. In this system, type I collagen gels containing sodium phosphate and buffered at pH 7.4 are overlayed with a solution containing CaCl2. Crystals form in the collagen gel adjacent to the gel-solution interface. Conditions were determined which permit the growth of crystals of hydroxyapatite [Ca10(PO4)6(OH)2]. At a Ca/P molar ratio of 2:1, the minimum concentrations of calcium and phosphate necessary for precipitation of hydroxyapatite are 10 mM and 5 mM, respectively. Under these conditions, precipitation is initiated at 18-24h, and is maximal between 24h and 6 days. Addition of high concentrations of chondroitin 4-sulphate inhibits the formation of hydroxyapatite in collagen gels; initiation of precipitation is delayed, and the final (equilibrium) amount of precipitation is decreased. Inhibition of hydroxyapatite formation requires concentrations of chondroitin sulphate higher than those required to inhibit calcium pyrophosphate crystal formation.


Author(s):  
Spencer P. Lake ◽  
Sadie Doggett ◽  
Victor H. Barocas

Connective soft tissues have complex mechanical properties that are determined by their collagen fiber network and surrounding non-fibrillar material. The mechanical role of non-fibrillar material and the nature of its interaction with the collagen network remain poorly understood, in part because of the lack of a simple experimental model system to examine and quantify these properties. The development of a simple but representational experimental system will allow for greater insight into the interaction between fibers and the non-fibrillar matrix. Reconstituted Type I collagen gels are an attractive model tissue for exploring micro- and macroscale relationships between constituents (e.g., [1–2]), but standard collagen gels lack the non-fibrillar components (i.e., proteoglycan, minor collagens, etc.) present in native tissue. A recent study [3] added low quantities of agarose to collagen gels, which dramatically increased the shear storage modulus with minimal changes to the collagen fiber network. In this study, we suggest that collagen-agarose co-gels can serve as a model system to investigate the mechanical role of non-fibrillar ECM. Even though agarose is relatively compliant at low concentrations, and collagen fibers are very stiff in tension, we hypothesized that the presence of agarose in co-gels would have a pronounced effect on structural response and mechanical behavior in tensile loading. Therefore, the objective of this study was to examine the properties of collagen-agarose co-gels to understand better the nature of, and the relationships between, the collagen fiber network and non-fibrillar matrix of simplified tissue analogs.


2000 ◽  
Vol 278 (5) ◽  
pp. L1032-L1038 ◽  
Author(s):  
X. D. Liu ◽  
C. M. Skold ◽  
T. Umino ◽  
J. R. Spurzem ◽  
D. J. Romberger ◽  
...  

Nitric oxide (NO) relaxes vascular smooth muscle in part through an accumulation of cGMP in the target cells. We hypothesized that a similar effect may also exist on collagen gel contraction mediated by human fetal lung (HFL1) fibroblasts, a model of wound contraction. To evaluate this, HFL1 cells were cultured in three-dimensional type I collagen gels and floated in serum-free DMEM with and without various NO donors. Gel size was measured with an image analyzer. Sodium nitroprusside (SNP, 100 μM) significantly augmented collagen gel contraction by HFL1 cells (78.5 ± 0.8 vs. 58.3 ± 2.1, P < 0.01), whereas S-nitroso- N-acetylpenicillamine, 5-amino-3-(4-morpholinyl)-1,2,3-oxadiazolium chloride, NONOate, and N G-monomethyl-l-arginine did not affect the contraction. Sodium ferricyanide, sodium nitrate, or sodium nitrite was not active. The augmentory effect of SNP could not be blocked by 1 H-[1,2,4]-oxadiazolo-[4,3- a]-quinoxalin-1-one, whereas it was partially reversed by 8-(4-chlorophenylthio) (CPT)-cGMP. To further explore the mechanisms by which SNP acted, fibronectin and PGE2 production were measured by immunoassay after 2 days of gel contraction. SNP inhibited PGE2 production and increased fibronectin production by HFL1 cells in a concentration-dependent manner. CPT-cGMP had opposite effects on fibronectin and PGE2 production. Addition of exogenous PGE2 blocked SNP-augmented contraction and fibronectin production by HFL1 cells. Therefore, SNP was able to augment human lung fibroblast-mediated collagen gel contraction, an effect that appears to be independent of NO production and not mediated through cGMP. Decreased PGE2 production and augmented fibronectin production may have a role in this effect. These data suggest that human lung fibroblasts in three-dimensional type I collagen gels respond distinctly to SNP by mechanisms unrelated to the NO-cGMP pathway.


2013 ◽  
pp. 15-25 ◽  
Author(s):  
A. JIROUTOVÁ ◽  
E. PETEROVÁ ◽  
L. BITTNEROVÁ ◽  
R. SLAVKOVSKÝ ◽  
P. ČEVELOVÁ ◽  
...  

Rat liver myofibroblasts (MFB) were isolated by repeated passaging of nonparenchymal liver cell fraction. They were cultured on polystyrene Petri dishes, on fibrin or on type I collagen gels for 5 days. Quantitative RT-PCR, Western blotting, zymography and immunocytochemistry were used to study differences in cell morphology and protein expression. MFB were large and spread on plastic substrate, with prominent α-smooth muscle (α-SMA) fibres. They turned much smaller and elongated on collagen which was accompanied by the rearrangement of the cytoskeleton and a decrease in α-SMA and β-actin content. Collagen gel induced the expression of a group of metalloproteinases (MMP-2, -3, -9, -13), on mRNA and protein level which resulted in the degradation of the gel. This response was accompanied by changes in the mRNA expression of cytokines of TGF-β family, CTGF and interleukin-6, as well as of osteopontin and thrombospondin-2 that are involved in metalloproteinases (MMPs) regulation. The expression of MMPs substrates, collagen types I, IV and XII did not change or decreased. The effects of fibrin gels on MFB were milder than those of collagen. MFB assumed to deposit collagen and other ECM components in fibrotic liver, besides hepatic stellate cells, also possess a great collagenolytic potential.


Author(s):  
Mohammad F. Hadi ◽  
Fabien J. Delalondre ◽  
Cameron W. Smith ◽  
Lijuan Zhang ◽  
Mark S. Shephard ◽  
...  

Indentation has become a popular research technique for the mechanical characterization of collagen-based soft tissues. The popularity of the method stems from its requirement of a modestly sized sample, from its ability to be applied in vitro as well as in vivo, and from the ready availability of instrumentation and analytical techniques borrowed from a long tradition of its application to non-biological materials. Many analytical models for the indentation of collagen-based soft tissues rely on a Hertzian contact model. Such a model emphasizes the contributions of an idealized material in compression over the contributions of the material in tension. However, this approach largely neglects the role of the collagen microstructure in soft tissue that has the capacity to carry far greater mechanical loads in tension rather than in compression.


Author(s):  
Victor K. Lai ◽  
Spencer P. Lake ◽  
Bumjun Kim ◽  
Emily M. Weiss ◽  
Robert T. Tranquillo ◽  
...  

Collagen gel tissue-equivalents (TEs), which are simple model tissues with tunable properties, have been used to explore many properties of soft tissues, such as how structural and compositional properties affect mechanical function [1–4]. One aspect not captured in previous TE formulations is residual stress due to interactions among components, which has an important functional role in many tissues (e.g., blood vessels [5], ligaments [6], annulus fibrosus [7]). Since the in vivo stress state of native tissues is not easily replicated in TE fabrication, a different method for “pre-stressing” collagen networks of TEs was necessary. To this end, co-gel TEs were fabricated by adding hyaluronic acid (HA) to reconstituted Type-I collagen (Col) gels. When placed in solutions of varying osmolarity, HA-Col TEs swell as the HA binds water, which in turn will stretch (and stress) the collagen network. In this way, TEs with residual stress (i.e., pre-stressed collagen fibers) can be fabricated and evaluated in order to elucidate relationships between residual stress and functional properties. Therefore, the goals of the present study were to fabricate HA-Col TEs, make initial measurements of their swelling properties, and quantify the mechanical response and changes in microstructural organization under applied tensile load.


2002 ◽  
Vol 282 (5) ◽  
pp. L1049-L1056 ◽  
Author(s):  
Xiangde Liu ◽  
Tadashi Kohyama ◽  
Hangjun Wang ◽  
Yun Kui Zhu ◽  
Fu-Qiang Wen ◽  
...  

Asthma is characterized by chronic inflammation of the airway wall with the presence of activated T helper 2 (Th2) lymphocytes. The current study assessed the ability of Th2 cytokines to modulate fibroblast-mediated contraction of collagen gels to determine if Th2 cytokines could contribute to tissue remodeling by altering mesenchymal cell contraction. Human fetal lung fibroblasts, human adult bronchial fibroblasts and human airway smooth muscle cells were cast into native type I collagen gels and allowed to contract in the presence or absence of IL (interleukin)-4, IL-5, IL-10, or IL-13. IL-4 and IL-13 but not IL-5 and IL-10 augmented collagen gel contraction in a concentration-dependent manner. Neither IL-4 nor IL-13 altered fibroblast production of transforming growth factor-β or fibronectin. Both, however, decreased fibroblast prostaglandin (PG) E2 release. Decreased PGE2 release was associated with a decreased expression of cyclooxygenase 1 and 2 protein and mRNA. Indomethacin completely inhibited PGE2release and also augmented contraction. IL-4 and IL-13, however, added together with indomethacin further augmented contraction suggesting both a PGE-dependent and a PGE-independent effect. These findings suggest that IL-4 and IL-13 may modulate airway tissue remodeling and, therefore, could play a role in the altered airway connective tissue which characterizes asthma.


2021 ◽  
Vol 22 (4) ◽  
pp. 2216
Author(s):  
Cheng-Chia Yu ◽  
Yi-Wen Liao ◽  
Pei-Ling Hsieh ◽  
Yu-Chao Chang

Oral submucous fibrosis (OSF) is known as a potentially malignant disorder, which may result from chemical irritation due to areca nuts (such as arecoline). Emerging evidence suggests that fibrogenesis and carcinogenesis are regulated by the interaction of long noncoding RNAs (lncRNAs) and microRNAs. Among these regulators, profibrotic lncRNA H19 has been found to be overexpressed in several fibrosis diseases. Here, we examined the expression of H19 in OSF specimens and its functional role in fibrotic buccal mucosal fibroblasts (fBMFs). Our results indicate that the aberrantly overexpressed H19 contributed to higher myofibroblast activities, such as collagen gel contractility and migration ability. We also demonstrated that H19 interacted with miR-29b, which suppressed the direct binding of miR-29b to the 3′-untranslated region of type I collagen (COL1A1). We showed that ectopic expression of miR-29b ameliorated various myofibroblast phenotypes and the expression of α-smooth muscle actin (α-SMA), COL1A1, and fibronectin (FN1) in fBMFs. In OSF tissues, we found that the expression of miR-29b was downregulated and there was a negative correlation between miR-29b and these fibrosis markers. Lastly, we demonstrate that arecoline stimulated the upregulation of H19 through the transforming growth factor (TGF)-β pathway. Altogether, this study suggests that increased TGF-β secretion following areca nut chewing may induce the upregulation of H19, which serves as a natural sponge for miR-29b and impedes its antifibrotic effects.


Sign in / Sign up

Export Citation Format

Share Document