Large Eddy Simulations of Discrete Hole Film Cooling With Plenum Inflow Orientation Effects

2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Sumanta Acharya ◽  
David Houston Leedom

Large eddy simulations of film cooling from a discrete hole inclined 35 deg and fed by a plenum chamber are performed at a density ratio of 2 and blowing ratios from 0.5 to 2.0. Cylindrical holes at a length to diameter ratio of 1.75 and 3.5 are simulated issuing into a crossflow at a Reynolds number of approximately 16,000 based on freestream velocity and hole diameter. In addition to the baseline case of vertical inflow into the plenum, flow orientation into the plenum chamber parallel to and perpendicular to the mainstream flow are investigated. The predicted results are validated with reported measurements of the flow field and surface adiabatic effectiveness. Results show that the longer delivery tubes (L/D = 3.5) have higher cooling effectiveness except in the very near field of the coolant hole. The flow orientation in the plenum is demonstrated to have a significant effect on cooling effectiveness and on flow behavior in the delivery tube and downstream of the hole. The perpendicular plenum inflow exhibits the lowest cooling effectiveness, the lowest discharge coefficients, asymmetric jetting behavior, swirl, and a low-velocity core at the exit of the delivery tube. The parallel plenum flow orientation is shown to exhibit the highest cooling effectiveness and discharge coefficients.

Author(s):  
Ashutosh Kumar Singh ◽  
Kuldeep Singh ◽  
Dushyant Singh ◽  
Niranjan Sahoo

Abstract The large eddy simulations (LES) are performed to access the film cooling performance of cylindrical and reverse shaped hole for forward and reverse injection configurations. In the case of reverse/backward injection, the secondary flow is injected in such a way that its axial velocity component is in the direction opposite to mainstream flow. The study is carried out for a blowing ratio (M = 1), density ratio (DR = 2.42), and injection angle (α = 35 deg). Formation of counter-rotating vortex pair (CRVP) is one of the major issues in the film cooling. This study revealed that the CRVP found in the case of forward cylindrical hole which promotes coolant jet “liftoff” is completely mitigated in the case of the reverse shaped hole. The coolant coverage for reverse cylindrical and reverse shaped holes is uniform and higher. The reverse shaped hole shows promising results among investigated configurations. The lateral averaged film cooling effectiveness of reverse shaped hole is 1.16–1.42 times higher as compared to the forward shaped holes. The improvement in the lateral averaged film cooling effectiveness of reverse cylindrical hole (RCH) injection over forward cylindrical hole (FCH) injection is 1.33–2 times.


Author(s):  
Aaron F. Shinn ◽  
S. Pratap Vanka

Large Eddy Simulations were performed to study the effect of a micro-ramp on an inclined turbulent jet interacting with a cross-flow in a film-cooling configuration. The micro-ramp vortex generator is placed downstream of the film-cooling jet. Changes in vortex structure and film-cooling effectiveness are evaluated and the genesis of the counter-rotating vortex pair in the jet is discussed. Results are reported with the jet modeled using a plenum/pipe configuration. This configuration was designed based on previous wind tunnel experiments at NASA Glenn Research Center, and the present results are meant to supplement those experiments. It is found that the micro-ramp improves film-cooling effectiveness by generating near-wall counter-rotating vortices which help entrain coolant from the jet and transport it to the surface. The pair of vortices generated by the micro-ramp are of opposite sense to the vortex pair embedded in the jet.


Author(s):  
Sai Shrinivas Sreedharan ◽  
Danesh K. Tafti

Computational studies are carried out using Large Eddy Simulations (LES) to investigate the effect of coolant to mainstream blowing ratio in a leading edge region of a film cooled vane. The three row leading edge vane geometry is modeled as a symmetric semi-cylinder with a flat afterbody. One row of coolant holes is located along the stagnation line and the other two rows of coolant holes are located at ±21.3° from the stagnation line. The coolant is injected at 45° to the vane surface with 90° compound angle injection. The coolant to mainstream density ratio is set to unity and the freestream Reynolds number based on leading edge diameter is 32000. Blowing ratios (B.R.) of 0.5, 1.0, 1.5, and 2.0 are investigated. It is found that the stagnation cooling jets penetrate much further into the mainstream, both in the normal and lateral directions, than the off-stagnation jets for all blowing ratios. Jet dilution is characterized by turbulent diffusion and entrainment. The strength of both mechanisms increases with blowing ratio. The adiabatic effectiveness in the stagnation region initially increases with blowing ratio but then generally decreases as the blowing ratio increases further. Immediately downstream of off-stagnation injection, the adiabatic effectiveness is highest at B.R. = 0.5. However, further downstream the larger mass of coolant injected at higher blowing ratios, in spite of the larger jet penetration and dilution, increases the effectiveness with blowing ratio.


Author(s):  
S. Baldauf ◽  
M. Scheurlen ◽  
A. Schulz ◽  
S. Wittig

Adiabatic film cooling effectiveness on a flat plate surface downstream of a row of cylindrical holes is investigated. Highly resolved two dimensional surface data were measured by means of infrared thermography and carefully corrected for local conduction and radiation effects [1]. These locally acquired data are laterally averaged to give the streamwise distributions of the effectiveness. An independent variation of the flow parameters blowing rate, density ratio, and turbulence intensity as well as the geometrical parameters streamwise ejection angle and hole spacing is examined. The influences of these parameters on the laterally effectiveness is discussed and interpreted with the help of surface distributions of effectiveness and heat transfer coefficients presented in earlier publications [1, 2]. Besides the known jet in cross-flow behavior of coolant ejected from discrete holes, these data demonstrate the effect of adjacent jet interaction and its impact on jet lift-off and adiabatic effectiveness. In utilizing this large matrix of measurements the effect of single parameters and their interactions are correlated. The important scaling parameters of the effectiveness are shaped out during the correlation process and are discussed. The resulting new correlation is designed to yield the quantitatively correct effectiveness as a result of the interplay of the jet in crossflow behavior and the adjacent jet interaction. It is built modularly to allow for future inclusion of additional parameters. The new correlation is valid without any exception within the full region of interest, reaching from the point of the ejection to far downstream, for all combinations of flow and geometry parameters.


2002 ◽  
Vol 124 (4) ◽  
pp. 686-698 ◽  
Author(s):  
S. Baldauf ◽  
M. Scheurlen ◽  
A. Schulz ◽  
S. Wittig

Adiabatic film-cooling effectiveness on a flat plate surface downstream of a row of cylindrical holes is investigated. Highly resolved two-dimensional surface data were measured by means of infrared thermography and carefully corrected for local conduction and radiation effects. These locally acquired data are laterally averaged to give the streamwise distributions of the effectiveness. An independent variation of the flow parameters blowing rate, density ratio, and turbulence intensity as well as the geometrical parameters streamwise ejection angle and hole spacing is examined. The influences of these parameters on the lateral effectiveness is discussed and interpreted with the help of surface distributions of effectiveness and heat transfer coefficients presented in earlier publications. Besides the known jet in cross-flow behavior of coolant ejected from discrete holes, these data demonstrate the effect of adjacent jet interaction and its impact on jet lift-off and adiabatic effectiveness. In utilizing this large matrix of measurements the effect of single parameters and their interactions are correlated. The important scaling parameters of the effectiveness are shaped out during the correlation process and are discussed. The resulting new correlation is designed to yield the quantitatively correct effectiveness as a result of the interplay of the jet in crossflow behavior and the adjacent jet interaction. It is built modularly to allow for future inclusion of additional parameters. The new correlation is valid without any exception within the full region of interest, reaching from the point of the ejection to far downstream, for all combinations of flow and geometry parameters.


Author(s):  
D. H. Leedom ◽  
S. Acharya

Large Eddy Simulations (LES) of cylindrical, laterally diffused, and console holes are performed, and the resulting flow field data is presented. The motivation for performing LES is to enable more accurate simulations and to obtain a better understanding of the flow physics associated with complex hole shapes. The simulations include the coolant delivery tube and the feeding plenum chamber, and are performed for a specific mass flow rate of coolant per unit width of blade. A crossflow inlet is used on the plenum, and the resulting asymmetric flow characteristics are investigated. Coolant delivery tube flow fields are investigated in detail. Results show qualitative agreement with reported trends of improved film coverage with diffused and console holes.


Author(s):  
Lesley M. Wright ◽  
Evan L. Martin

Detailed film cooling effectiveness distributions are obtained on a flat plate using the pressure sensitive paint (PSP) technique. The effects of average blowing ratio (M = 0.25–1.0) and coolant – to – mainstream density ratio (DR = 1.0–1.4) are evaluated in a low speed wind tunnel with a freestream velocity of 8.5 m/s and a freestream turbulence intensity of 6.8%. The coolant – to – mainstream density ratio is varied by using either nitrogen (DR = 1.0) or argon (DR = 1.4) as the coolant gases. The double hole geometry consists of a row of simple angle (θ = 35°), cylindrical holes coupled with one row of compound angle holes (θ = 45°, β = 50°). With the selected geometry, the compound holes effectively weaken the counter rotating vortex pair formed within the traditional simple angle hole. Therefore, the surface film cooling effectiveness is increased compared to a single row of simple angle film cooling holes. While increasing the blowing ratio decreases the film cooling effectiveness, the severity of the film cooling effectiveness reduction is less than with the single row of holes.


Author(s):  
Young Seok Kang ◽  
Sangook Jun ◽  
Dong-Ho Rhee

Abstract Large eddy simulations on the well-known 7-7-7 fan shaped cooling hole were carried out. Like using a trip strip to create turbulent boundary layer in practical experiments, trip strips with different configurations were placed upstream of the cooling hole to investigate incoming turbulent boundary layer effect on the film cooling flow behavior. Without the trip, horseshoe vortex generated by laminar boundary layer induced laterally discharging cooling flow in the lateral direction. Meanwhile, the induced cooling flow formed high film cooling effectiveness region around the film cooling hole. When the incoming boundary flow was turbulent, laterally discharged cooling flow was influenced by the turbulent boundary layer to dissipate to the main flow and resultant high effectiveness region disappeared. Depending on the trip configuration, quantitative characteristics of boundary layer such as turbulent intensity, momentum thickness and shape factor were strongly affected. Some trip configurations resulted in fully developed turbulent boundary layer just before leading edge of the film cooling hole. In such cases, distribution of the film cooling effectiveness showed a reasonable agreement with available experimental data where the quantitative properties of the turbulent boundary layer were similar. However, when the trip was located too close to the film cooling hole, the separated and reattached flow did not develop into the stabilized turbulent boundary layer. Then strong turbulence intensity in the main flow boundary layer stimulated break down of the cooling flow vortex structure and early dissipation to the main flow. It resulted in restricted film cooling flow coverage.


Author(s):  
Young Seok Kang ◽  
Sangook Jun ◽  
Dong-Ho Rhee

Abstract Large eddy simulations on well-known 7-7-7 fan shaped cooling hole have been carried out. Film cooling methods are generally applied to high pressure turbine, of which flow condition is extremely turbulent because high pressure turbines are generally located downstream combustor in gas turbines. However, different to RANS simulations, implementing turbulence at the main flow inlet is not simple in LES. For this reason, several numerical techniques have been devised to give turbulence information at the inlet boundary condition in LES. In this study, rectangular turbulator was located in front of the cooling hole to generate turbulent boundary flow in the main flow. Another method used in this study is transient table method to simulate turbulent flow at the main flow inlet. Without turbulent velocity components in approaching flow, laterally discharged cooling flow touches wall while it forms a vortex structure. Then high film cooling effectiveness region around the cooling hole appears. In the meanwhile, when approaching flow is turbulent, the laterally discharged cooling flow no more forms vortex structure and dissipated to the main flow and resultant high effectiveness region disappears. Both turbulence generation methods showed that turbulent intensity of the main flow affects effective range of the cooling flow and resultant film cooling effectiveness distributions. Also high turbulence intensity of the main flow stimulates early break down of the vortex structure coming out of the cooling hole and its dissipation to the main flow. It means high turbulent intensity restricts film cooling flow coverage. Another lesson from the study is that vortex generated from the cooling hole, its development and dissipation to the main flow, have an important role to understand film cooling effectiveness distributions around the cooling hole.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
S. Sarkar ◽  
Ganesh Ranakoti

Film cooling is often adopted, where coolant jets are ejected to form a protective layer on the surface against the hot combustor gases. The bending of jets in crossflow results in counter rotating vortex pair (CRVP), which is a cause for high jet lift-off and poor film cooling effectiveness in the near field. There are efforts to mitigate this detrimental effect of CRVP, and thus, to improve the film cooling performance. In the present study, the effects of both downwash and upwash type of vortex generator (VG) on film cooling are numerically analyzed. A series of discrete holes on a flat plate with 35 deg streamwise orientation and connected to a common delivery plenum is used here, where the vortex generators are placed upstream of the holes. The blowing ratio and the density ratio are considered as 0.5 and 1.2, respectively, with a Reynolds number based on freestream velocity and diameter of hole being 15,885. The computations are performed by ANSYS fluent 13.0 using k–ε realizable turbulence model. The results show that vortices generated by downwash vortex generator (DWVG) counteracts the effect of CRVP preventing the jet lift-off, which results in increased effectiveness in streamwise as well as in spanwise directions. However, upwash vortex generator (UWVG) augments the effect of CRVP, resulting in poor performance of film cooling.


Sign in / Sign up

Export Citation Format

Share Document