Pressure Distribution in the Calendering of Plastic Materials

1951 ◽  
Vol 18 (1) ◽  
pp. 101-106
Author(s):  
J. T. Bergen ◽  
G. W. Scott

Abstract In the calendering, or rolling, of a plastic material in to sheet form by passing it between parallel rolls, hydrostatic pressure is exerted against the surface of the roll throughout the region of contact with the plastic mass. This pressure has been measured by means of a pressure-sensitive cylinder, inserted in the body of a 10-in-diam roll, together with high-speed oscillographic technique. The materials which were calendered consisted of a resin which exhibited flow properties characteristic of a viscous liquid, and several filled plastic compositions of commercial interest. Pressure maxima ranging up to 8000 psi were observed. Comparison of experimental results with theoretical expressions for pressure distribution, as given by several authors, indicates that the equation derived by Gaskell quite satisfactorily predicts the results for the case of the viscous liquid. The commercial plastics were found to exhibit pressure-distribution characteristics which were perceptibly different from those of the viscous liquid. Certain limitations of Gaskell’s treatment of nonviscous materials prevent its application to these experimental results.

Author(s):  
O. K. Lawaczeck

This paper deals with the flow through cascades, which have a supersonic flow up- and downstream. A theoretical method is described to calculate, under certain conditions, the flow quantities up- and downstream of and within the cascade and to determine the pressure distribution on the blades. The method is compared with experimental results, carried out in the cascade wind tunnel of the Aero dynamische Versuchsanstalt Göttingen (AVA), Germany.


2008 ◽  
Vol 2008.57 (0) ◽  
pp. 127-128
Author(s):  
Masaya Hayashida ◽  
Yu Matsuda ◽  
Dai Naito ◽  
Hideo Mori ◽  
Tomohide Niimi

Author(s):  
Camelia Cioban ◽  
T. I. Traşcă

This paper presents the experimental results for the packaging of tomato juice in bags that are made from complex plastic materials, through some preservation processes. The product is packaging in bags made from the complex plastic material PA / PVDC (polyamide / polyvinylidene chloride). In such a material, the products preserved their characteristics – sensorial, physic-chemical and microbiological up to three months.


Author(s):  
Tomohiro Kameya ◽  
Yu Matsuda ◽  
Hiroki Yamaguchi ◽  
Yasuhiro Egami ◽  
Tomohide Niimi

There appears fluttering phenomena in a hard disk drive system with high-speed disks rotating inside a closed space, leading to degrade of reading and writing performance. The precise pressure distribution on the disk may improve the performance, but there has been no report because it is very hard to measure the surface pressure using conventional techniques, such as pressure taps. While pressure sensitive paint (PSP) seems to be suitable for the pressure measurement on the disk, we have to compensate its highly temperature-sensitive characteristics of PSP, because the temperature distribution on the disk is not assumed to be uniform. We employed PySO3H based PSP, which has small temperature sensitivity, and have obtained the pressure distribution on the disk rotated at various speeds (10000–20000 rpm) successfully. The result showed that the pressure is higher at the disk outside than at the center, and forms a concentric circle distribution. Moreover, we found that the pressure difference between the inner and outer region of the disk increases as a square of disk rotation speed.


1998 ◽  
Vol 8 (2) ◽  
pp. 155-178 ◽  
Author(s):  
J. H. Hilbing ◽  
Stephen D. Heister

Author(s):  
Francisco Lamas ◽  
Miguel A. M. Ramirez ◽  
Antonio Carlos Fernandes

Flow Induced Motions are always an important subject during both design and operational phases of an offshore platform life. These motions could significantly affect the performance of the platform, including its mooring and oil production systems. These kind of analyses are performed using basically two different approaches: experimental tests with reduced models and, more recently, with Computational Fluid Dynamics (CFD) dynamic analysis. The main objective of this work is to present a new approach, based on an analytical methodology using static CFD analyses to estimate the response on yaw motions of a Tension Leg Wellhead Platform on one of the several types of motions that can be classified as flow-induced motions, known as galloping. The first step is to review the equations that govern the yaw motions of an ocean platform when subjected to currents from different angles of attack. The yaw moment coefficients will be obtained using CFD steady-state analysis, on which the yaw moments will be calculated for several angles of attack, placed around the central angle where the analysis is being carried out. Having the force coefficients plotted against the angle values, we can adjust a polynomial curve around each analysis point in order to evaluate the amplitude of the yaw motion using a limit cycle approach. Other properties of the system which are flow-dependent, such as damping and added mass, will also be estimated using CFD. The last part of this work consists in comparing the analytical results with experimental results obtained at the LOC/COPPE-UFRJ laboratory facilities.


2007 ◽  
Vol 340-341 ◽  
pp. 283-288 ◽  
Author(s):  
Jung Han Song ◽  
Hoon Huh

The dynamic response of the turbine blade materials is indispensable for analysis of erosions of turbine blades as a result of impulsive loading associated with gas flow. This paper is concerned with the dynamic material properties of the Inconel 718 alloy which is widely used in the high speed turbine blade. The dynamic response at the corresponding level of the strain rate should be acquired with an adequate experimental technique and apparatus due to the inertia effect and the stress wave propagation. In this paper, the dynamic response of the Inconel 718 at the intermediate strain rate ranged from 1/s to 400/s is obtained from the high speed tensile test and that at the high strain rate above 1000/s is obtained from the split Hopkinson pressure bar test. The effects of the strain rate on the dynamic flow stress, the strain rate sensitivity and the failure elongation are evaluated with the experimental results. Experimental results from both the quasi-static and the high strain rate up to 3000/s are interpolated in order to construct the constitutive relation that should be applied to simulate the dynamic behavior of the turbine blade made of the Inconel 718.


1959 ◽  
Vol 63 (585) ◽  
pp. 508-512 ◽  
Author(s):  
K. W. Mangler

When a body moves through air at very high speed at such a height that the air can be considered as a continuum, the distinction between sharp and blunt noses with their attached or detached bow shocks loses its significance, since, in practical cases, the bow wave is always detached and fairly strong. In practice, all bodies behave as blunt shapes with a smaller or larger subsonic region near the nose where the entropy and the corresponding loss of total head change from streamline to streamline due to the curvature of the bow shock. These entropy gradients determine the behaviour of the hypersonic flow fields to a large extent. Even in regions where viscosity effects are small they give rise to gradients of the velocity and shear layers with a lower velocity and a higher entropy near the surface than would occur in their absence. Thus one can expect to gain some relief in the heating problems arising on the surface of the body. On the other hand, one would lose farther downstream on long slender shapes as more and more air of lower entropy is entrained into the boundary layer so that the heat transfer to the surface goes up again. Both these flow regions will be discussed here for the simple case of a body of axial symmetry at zero incidence. Finally, some remarks on the flow field past a lifting body will be made. Recently, a great deal of information on these subjects has appeared in a number of reviewing papers so that little can be added. The numerical results on the subsonic flow regions in Section 2 have not been published before.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 593
Author(s):  
Ryota Yanagisawa ◽  
Shunsuke Shigaki ◽  
Kotaro Yasui ◽  
Dai Owaki ◽  
Yasuhiro Sugimoto ◽  
...  

In this study, we fabricated a novel wearable vibration sensor for insects and measured their wing flapping. An analysis of insect wing deformation in relation to changes in the environment plays an important role in understanding the underlying mechanism enabling insects to dynamically interact with their surrounding environment. It is common to use a high-speed camera to measure the wing flapping; however, it is difficult to analyze the feedback mechanism caused by the environmental changes caused by the flapping because this method applies an indirect measurement. Therefore, we propose the fabrication of a novel film sensor that is capable of measuring the changes in the wingbeat frequency of an insect. This novel sensor is composed of flat silver particles admixed with a silicone polymer, which changes the value of the resistor when a bending deformation occurs. As a result of attaching this sensor to the wings of a moth and a dragonfly and measuring the flapping of the wings, we were able to measure the frequency of the flapping with high accuracy. In addition, as a result of simultaneously measuring the relationship between the behavior of a moth during its search for an odor source and its wing flapping, it became clear that the frequency of the flapping changed depending on the frequency of the odor reception. From this result, a wearable film sensor for an insect that can measure the displacement of the body during a particular behavior was fabricated.


2021 ◽  
Vol 1 ◽  
pp. 1123-1132
Author(s):  
Tatsuya Oda ◽  
Shigeru Wesugi

AbstractDuring the cold season, the cold protective products are often short during evacuation life after a natural disaster. If evacuees can make and wear simple cold protective gears by using materials obtainable on site, it will reduce the burden on the evacuees in emergent situation. Therefore, we investigated the structure constructed by folding newsprint paper, which can improve the heat retention effect and be applied to various body shapes. Focusing on the glide reflection structure repeating a smaller chamber, the basic size was determined by experiments with reference to the accordion shape, and the experimental results indicated that the heat retention effect was significantly greater than that of a mere air layer and those of ordinary fabrics. Next, it was found that the apex angle of structure had no significant difference in the heat retention effect. Then, the dimensions of the structure were determined to maintain the air layer under the pressure of the clothes by simulation of structural analyses. Finally, we made a temporary cold protective gear that can practically cover the trunk of the body and found that the heat retention effect was significantly higher than that of unprocessed newsprint and that of accordion shape.


Sign in / Sign up

Export Citation Format

Share Document