Measurement of Recovery Factors and Friction Coefficients for Supersonic Flow of Air in a Tube: 1—Apparatus, Data, and Results Based on a Simple One-Dimensional Flow Model

1952 ◽  
Vol 19 (1) ◽  
pp. 77-96
Author(s):  
J. Kaye ◽  
J. H. Keenan ◽  
K. K. Klingensmith ◽  
G. M. Ketchum ◽  
T. Y. Toong

Abstract For the past few years a program has been under way to obtain reliable data on the rate of heat transfer to air moving at supersonic speeds. The investigation was limited to air flowing at supersonic speeds in a round tube. The program was divided into two separate parts, the first for measurement of the adiabatic wall temperatures of a supersonic stream and the second for the heat-transfer rate. The first part of this program is described here. The details of three experimental test combinations used to measure the adiabatic wall temperature and local state of a supersonic stream of air are presented. The experimental data for forty runs, in the form of measured pressure and temperature distributions, are included. The range of diameter Reynolds number covered is from 0.15 × 105 to 5 × 105. The length Reynolds number extends to 120 × 105. The Mach number at the inlet to the round tube is about 2.6. The calculated quantities such as the local apparent friction coefficient, recovery factor, local Mach number, and so forth, are obtained from the simple one-dimensional flow model for which the properties of the stream are uniform at any cross section of the tube and boundary-layer effects are ignored. A subsequent paper deals with the calculation of these quantities when account is taken of the boundary-layer growth in the tube on the basis of a two-dimensional flow model.

1955 ◽  
Vol 22 (3) ◽  
pp. 289-296
Author(s):  
Joseph Kaye ◽  
J. H. Keenan ◽  
G. A. Brown ◽  
R. H. Shoulberg

Abstract Reliable experimental data, obtained at relatively low cost, are presented in the form of heat-transfer coefficients for air moving at supersonic speeds in a round tube. These data are analyzed, interpreted, and compared with available data in the literature. The experimental local heat-transfer coefficients are for laminar, transitional, and turbulent boundary layers. The data for a laminar boundary layer, comprising 17 runs, are discussed here for Mach numbers at tube inlet of 2.8 and 3.0. The range of values of diameter Reynolds number covered is from 20,000 to 100,000 for these laminar-flow tests, while the length Reynolds number extends to about 4,000,000. The computed quantities are obtained on the basis of a simple one-dimensional flow model, but a companion paper will analyze the same data in greater detail on the basis of a two-dimensional flow model.


1955 ◽  
Vol 22 (3) ◽  
pp. 297-304
Author(s):  
Joseph Kaye ◽  
G. A. Brown

Abstract Reliable experimental data on local heat-transfer coefficients for supersonic flow of air in a round tube are reanalyzed in detail with the aid of an approximate two-dimensional flow model. The results are compared with similar results based on a one-dimensional flow model and with the theoretical predictions for supersonic flow over a flat plate and for flow in the entrance region of a tube when a laminar boundary layer is present. The two-dimensional flow model yields a better understanding of the phenomena which occur for diabatic supersonic flow of air in a round tube than that obtained with the aid of the one-dimensional flow model. The two-dimensional flow model shows that the core Mach number is nearly constant along the length of test section for a range of values of the inlet diameter Reynolds number. For a laminar boundary layer the values of the local Stanton number agree within a few per cent with the theoretical values for plate flow at the largest values of the inlet diameter Reynolds number.


1956 ◽  
Vol 60 (541) ◽  
pp. 67-70
Author(s):  
T. A. Thomson

The blow-down type of intermittent, supersonic tunnel is attractive because of its simplicity and because relatively high Reynolds numbers can be obtained for a given size of test section. An adverse characteristic, however, is the fall of stagnation temperature during runs, which can affect experiments in several ways. The Reynolds number varies and the absolute velocity is not constant, even if the Mach number and pressure are; heat-transfer cannot be studied under controlled conditions and the experimental errors arising from the effect of heat-transfer on the boundary layer vary in time. These effects can become significant in quantitative experiments if the tunnel is large and the variation of temperature very rapid; the expense required to eliminate them might then be justified.


1973 ◽  
Vol 60 (2) ◽  
pp. 257-271 ◽  
Author(s):  
G. T. Coleman ◽  
C. Osborne ◽  
J. L. Stollery

A hypersonic gun tunnel has been used to measure the heat transfer to a sharpedged flat plate inclined at various incidences to generate local Mach numbers from 3 to 9. The measurements have been compared with a number of theoretical estimates by plotting the Stanton number against the energy-thickness Reynolds number. The prediction giving the most reasonable agreement throughout the above Mach number range is that due to Fernholz (1971).The values of the skin-friction coefficient derived from velocity profiles and Preston tube data are also given.


1966 ◽  
Vol 24 (1) ◽  
pp. 1-31 ◽  
Author(s):  
H. T. Nagamatsu ◽  
B. C. Graber ◽  
R. E. Sheer

An investigation was conducted in a hypersonic shock tunnel to study the laminar boundary-layer transition on a highly cooled 10° cone of 4 ft. length over the Mach-number range of 8·5 to 10·5 with a stagnation temperature of 1400 °K. The effects on transition of tip surface roughness, tip bluntness, and ± 2° angle of attack were investigated. With fast-response, thin film surface heat-transfer gauges, it was possible to detect the passage of turbulent bursts which appeared at the beginning of transition. Pitot-tube surveys and schlieren photographs of the boundary layer were obtained to verify the interpretation of the heat-transfer data. It was found that the surface roughness greatly promoted transition in the proper Reynolds-number range. The Reynolds numbers for the beginning and end of transition at the 8·5 Mach-number location were 3·8 × 106−9·6 × 106and 2·2 × 106−4·2 × 106for the smooth sharp tip and rough sharp tip respectively. The local skin-friction data, determined from the Pitot-tube survey, agreed with the heat-transfer data obtained through the modified Reynolds analogy. The tip-bluntness data showed a strong delay in the beginning of transition for a cone base-to-tip diameter ratio of 20, approximately a 35% increase in Reynolds number over that of the smooth sharp-tip case. The angle-of-attack data indicated the cross flow to have a strong influence on transition by promoting it on the sheltered side of the cone and delaying it on the windward side.


Author(s):  
Marion Mack ◽  
Roland Brachmanski ◽  
Reinhard Niehuis

The performance of the low pressure turbine (LPT) can vary appreciably, because this component operates under a wide range of Reynolds numbers. At higher Reynolds numbers, mid and aft loaded profiles have the advantage that transition of suction side boundary layer happens further downstream than at front loaded profiles, resulting in lower profile loss. At lower Reynolds numbers, aft loading of the blade can mean that if a suction side separation exists, it may remain open up to the trailing edge. This is especially the case when blade lift is increased via increased pitch to chord ratio. There is a trend in research towards exploring the effect of coupling boundary layer control with highly loaded turbine blades, in order to maximize performance over the full relevant Reynolds number range. In an earlier work, pulsed blowing with fluidic oscillators was shown to be effective in reducing the extent of the separated flow region and to significantly decrease the profile losses caused by separation over a wide range of Reynolds numbers. These experiments were carried out in the High-Speed Cascade Wind Tunnel of the German Federal Armed Forces University Munich, Germany, which allows to capture the effects of pulsed blowing at engine relevant conditions. The assumed control mechanism was the triggering of boundary layer transition by excitation of the Tollmien-Schlichting waves. The current work aims to gain further insight into the effects of pulsed blowing. It investigates the effect of a highly efficient configuration of pulsed blowing at a frequency of 9.5 kHz on the boundary layer at a Reynolds number of 70000 and exit Mach number of 0.6. The boundary layer profiles were measured at five positions between peak Mach number and the trailing edge with hot wire anemometry and pneumatic probes. Experiments were conducted with and without actuation under steady as well as periodically unsteady inflow conditions. The results show the development of the boundary layer and its interaction with incoming wakes. It is shown that pulsed blowing accelerates transition over the separation bubble and drastically reduces the boundary layer thickness.


1997 ◽  
Vol 119 (4) ◽  
pp. 794-801 ◽  
Author(s):  
J. Luo ◽  
B. Lakshminarayana

The boundary layer development and convective heat transfer on transonic turbine nozzle vanes are investigated using a compressible Navier–Stokes code with three low-Reynolds-number k–ε models. The mean-flow and turbulence transport equations are integrated by a four-stage Runge–Kutta scheme. Numerical predictions are compared with the experimental data acquired at Allison Engine Company. An assessment of the performance of various turbulence models is carried out. The two modes of transition, bypass transition and separation-induced transition, are studied comparatively. Effects of blade surface pressure gradients, free-stream turbulence level, and Reynolds number on the blade boundary layer development, particularly transition onset, are examined. Predictions from a parabolic boundary layer code are included for comparison with those from the elliptic Navier–Stokes code. The present study indicates that the turbine external heat transfer, under real engine conditions, can be predicted well by the Navier–Stokes procedure with the low-Reynolds-number k–ε models employed.


2021 ◽  
Author(s):  
V. L. Kocharin ◽  
A. A. Yatskikh ◽  
D. S. Prishchepova ◽  
A. V. Panina ◽  
Yu. G. Yermolaev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document