Two-Dimensional Inflow Conditions for a Supersonic Compressor With Curved Blades

1957 ◽  
Vol 24 (2) ◽  
pp. 165-169
Author(s):  
Philip Levine

Abstract Results are presented on an analytical study of the flow field existing upstream of a blade row, where the axial flow is subsonic and the relative flow is supersonic. The flow model used as a basis for the calculations assumes isentropic flow, and considers the case where the suction surface is a circular arc in the entrance region. The results clearly show the unique dependence of the flow through a blade row upon the geometry of the entrance region. Using the results, the complete flow field in the entrance region and upstream of the blade row can be constructed easily.

Author(s):  
H. Mizuta ◽  
S. Nakaoka ◽  
Y. Sato ◽  
J. Sugimura

This paper describes an analytical study on gas transportation in radial shaft seal. A model is constructed in which seal surfaces with sinusoidal roughness, lubricant flow at the seal lip with gaseous cavity, dissolution of gas into and release of gas from the lubricant across double boundary films at gas-liquid interfaces, and convection of dissolved gas in the lubricant flow are considered. Polyalphaolefin as a lubricant, and helium, argon and carbon dioxide are assumed. The results demonstrate that the axial flow induced by surface roughness carries the gas, and that the gas flow through the lubricant film is proportional to the gas solubility coefficient, and the circumferential speed of the shaft, which agrees with the experimental finding for actual seals. The dependence of the gas flow on the axial flow of the oil and that on the boundary films are discussed.


Author(s):  
Rolf Emunds ◽  
Ian K. Jennions ◽  
Dieter Bohn ◽  
Jochen Gier

This paper deals with the numerical simulation of flow through a 1.5 stage axial flow turbine. The 3-row configuration has been experimentally investigated at the University of Aachen where measurements behind the first vane, the first stage and the full configuration were taken. These measurements allow single blade row computations, to the measured boundary conditions taken from complete engine experiments, or full multistage simulations. The results are openly available inside the framework of ERCOFTAC 1996. There are two separate but interrelated parts to the paper. Firstly, two significantly different Navier-Stokes codes are used to predict the flow around the first vane and the first rotor, both running in isolation. This is used to engender confidence in the code that is subsequently used to model the multiple bladerow tests, the other code is currently only suitable for a single blade row. Secondly, the 1.5 stage results are compared to the experimental data and promote discussion of surrounding blade row effects on multistage solutions.


Author(s):  
Michael A. Zaccaria ◽  
Budugur Lakshminarayana

The flow field in turbine rotor passages is complex with unsteadiness caused by the aerodynamic interaction of the nozzle and rotor flow fields. The two-dimensional steady and unsteady flow field at midspan in an axial flow turbine rotor has been investigated experimentally using an LDV with emphasis on the interaction of the nozzle wake with the rotor flow field. The flow field in the rotor passage is presented in Part I, while the flow field downstream of the rotor is presented in Part II. Measurements were acquired at 37 axial locations from just upstream of the rotor to one chord downstream of the rotor. The time average flow field and the unsteadiness caused by the wake has been captured. As the nozzle wake travels through the rotor flow field, the nozzle wake becomes distorted with the region of the nozzle wake near the rotor suction surface moving faster than the region near the rotor pressure surface, resulting in a highly distorted wake. The wake is found to be spread out along the rotor pressure surface, as it convects downstream of midchord. The magnitude of the nozzle wake velocity defect grows until close to midchord, after which it decreases. High values of unresolved unsteadiness were observed at the rotor leading edge. This is due to the large flow gradients near the leading edge and the interaction of the nozzle wake with the rotor leading edge. High values of unresolved unsteadiness were also observed near the rotor pressure surface. This increase in unresolved unsteadiness is caused by the interaction of the nozzle wake with the flow near the rotor pressure surface.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Jules W. Lindau ◽  
Christopher Pena ◽  
Warren J. Baker ◽  
James J. Dreyer ◽  
William L. Moody ◽  
...  

A computational-fluid-dynamics-based modeling effort to capture flow through an axial flow waterjet propulsor is presented. The effort covered the waterjet flow over a wide range of flow coefficients and into cavitation-driven breakdown. The computations are presented in cavitation at two values of flow coefficient through a series of decreasing operating inlet total pressure. The computational results are compared to experimental measurements. Suction-surface and tip-gap cavitation patterns are presented and compared to experimental photographs. Presented computational solutions are blade-passage steady and periodic. The computational results apply a powering iteration methodology to facilitate coupling of rotor, stator, and inflow and outflow ducting.


1997 ◽  
Vol 119 (4) ◽  
pp. 723-732 ◽  
Author(s):  
W. G. Joo ◽  
T. P. Hynes

This paper describes the development of actuator disk models to simulate the asymmetric flow through high-speed low hub-to-tip ratio blade rows. The actuator disks represent boundaries between regions of the flow in which the flow field is solved by numerical computation. The appropriate boundary conditions and their numerical implementation are described, and particular attention is paid to the problem of simulating the effect of blade row blockage near choking conditions. Guidelines on choice of axial position of the disk are reported. In addition, semi-actuator disk models are briefly described and the limitations in the application of the model to supersonic flow are discussed.


Author(s):  
V. S. P. Chaluvadi ◽  
A. I. Kalfas ◽  
H. P. Hodson

This paper presents a study of the three-dimensional flow field within the blade rows of a high-pressure axial flow steam turbine stage. Half-delta wings were fixed to a rotating hub to simulate an upstream rotor passage vortex. The flow field is investigated in a Low-Speed Research Turbine using pneumatic and hot-wire probes downstream of the blade row. The paper examines the impact of the delta wing vortex transport on the performance of the downstream blade row. Steady and unsteady numerical simulations were performed using structured 3D Navier-Stokes solver to further understand the flow field. The loss measurements at the exit of the stator blade showed an increase in stagnation pressure loss due to the delta wing vortex transport. The increase in loss was 21% of the datum stator loss, demonstrating the importance of this vortex interaction. The transport of the stator viscous flow through the rotor blade row is also described. The rotor exit flow was affected by the interaction between the enhanced stator passage vortex and the rotor blade row. Flow underturning near the hub and overturning towards the mid-span was observed, contrary to the classical model of overturning near the hub and underturning towards the mid-span. The unsteady numerical simulation results were further analysed to identify the entropy producing regions in the unsteady flow field.


1997 ◽  
Vol 119 (2) ◽  
pp. 201-213 ◽  
Author(s):  
M. A. Zaccaria ◽  
B. Lakshminarayana

The flow field in turbine rotor passages is complex with unsteadiness caused by the aerodynamic interaction of the nozzle and rotor flow fields. The two-dimensional steady and unsteady flow field at midspan in an axial flow turbine rotor has been investigated experimentally using an LDV with emphasis on the interaction of the nozzle wake with the rotor flow field. The flow field in the rotor passage is presented in Part I. while the flow field downstream of the rotor is presented in Part II. Measurements were acquired at 37 axial locations from just upstream of the rotor to one chord downstream of the rotor. The time-averaged flow field and the unsteadiness caused by the wake have been captured. As the nozzle wake travels through the rotor flow field, the nozzle wake becomes distorted with the region of the nozzle wake near the rotor suction surface moving faster than the region near the rotor pressure surface, resulting in a highly distorted wake. The wake is found to be spread out along the rotor pressure surface, as it convects downstream of midchord. The magnitude of the nozzle wake velocity defect grows until close to midchord, after which it decreases. High values of unresolved unsteadiness were observed at the rotor leading edge. This is due to the large flow gradients near the leading edge and the interaction of the nozzle wake with the rotor leading edge. High values of unresolved unsteadiness were also observed near the rotor pressure surface. This increase in unresolved unsteadiness is caused by the interaction of the nozzle wake with the flow near the rotor pressure surface.


Author(s):  
Dieter E. Bohn ◽  
Ingo Balkowski ◽  
Hongwei Ma ◽  
Christian Tu¨mmers ◽  
Michael Sell

An important goal of the development of turbine bladings is to increase the efficiency for an optimized use of energy resources. This necessitates the most possible insight into the complex flow phenomena in multi-stage turbine bladings. This paper presents a combined numerical and experimental investigation of the flow field in a 2-stage axial turbine with shrouded blades, where the axial gap between the shroud and the endwall is varied between 1mm (closed cavities) and 5 mm (opened cavities). In the experimental setup at the Institute of Steam and Gas Turbines, Aachen University, the turbine is operated at a low pressure ratio of 1.4 with an inlet pressure of 3.2 bar. The rotating speed is adjusted by a water brake, which is integrated into a swing frame running in hydrostatic bearings. The rotor power dissipates in the water brake, which enables a very accurate angular momentum determination. The mass flow is measured through a calibrated nozzle installed upstream of the turbine inlet at an accuracy of better than 1%, from which stage efficiencies can be derived. For both geometric configurations (open and closed shroud cavities), the flow field at both inlet and outlet is measured using 5-hole probes as well as temperature probes at three operating conditions. The test rig is especially designed to investigate the influence of the cavity size. Therefore, the radial gaps between shroud and casing is held near zero in order to prevent an axial flow through the cavities. The experimental results are used as boundary conditions for corresponding numerical multi-stage calculations of the 3D flow through the 2-stage turbine, using the highly accurate steady Navier-Stokes inhouse computer code, CHT-Flow. The flow field measurements and the numerical simulations give deeper insight into some of the cavity-related flow field phenomena. The measurement results as well as the simulations indicate that the stator leading edge has little influence on the inlet flow field. The flow through the shroud cavities has a significant influence on the field and therefore on the machine’s performance.


Author(s):  
N. W. Harvey

Non-axisymmetric end wall profiling is now a well established design methodology in axial flow turbines, used principally to improve their aerodynamic efficiency by reducing secondary loss. However, profiled end walls (PEWs) have yet to find an in-service application in a gas turbine compressor. This two-part paper presents the results of a number of studies, both experimental and computational, into the potential aerodynamic benefits of applying PEWs in axial flow compressors. The first paper reports research carried out using a linear compressor stator cascade at Cambridge University. The datum geometry was based on previous research with this cascade. The PEW geometry was generated using a method that had been proven to reduce secondary loss in turbine blade rows. Data was taken on the datum and PEW geometries in the form of exit area traverses and surface static pressure measurements. The experiments demonstrated improvements to the exit flow field in terms of local reductions in the loss and under-turning in the secondary flow region due to the PEW. It was found that the original design method had over estimated the benefits of the PEW. The datum and PEW geometries were further analysed using state-of-the-art CFD (Computational Fluid Dynamics). The CFD is shown to achieve very good agreement with measurement at the design condition and a reasonable, qualitative match at off-design. It is concluded that the PEW geometry, though not optimum, effected predictable changes to the compressor stator flow field. The mechanisms for these effects are discussed and conclusions are drawn for taking the work forward. In particular, a mechanism is identified whereby the PEW enhances the cross-flow on the end wall and the subsequent radial migration of the secondary flow adjacent to the aerofoil suction surface. The control of corner stall by means of this flow mechanism is highlighted as a possible area for further investigation. This is followed up in the second paper, which presents a computational study of applying PEWs to a multi-stage HP compressor.


Sign in / Sign up

Export Citation Format

Share Document