An Integrated Mechanical–Thermal Predictive Model of Thermal Contact Conductance

2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Jun Hong ◽  
Junfeng Peng ◽  
Baotong Li

In this paper, an integrated mechanical–thermal predictive model of thermal contact conductance (TCC) between two nominally flat metallic rough surfaces is developed. Asperities on rough surface were approximated as parabolas. The asperity height deviation and average asperity top radius were measured as surface parameters and then used for mechanical and thermal modeling. A 3D shoulder–shoulder contact deformation model was then extended, taking into account different degrees of misalignment of contact between asperities and three modes of deformation: elastic, elastoplastic, and plastic. The yielded normal contact pressure, which should be equal to the exterior load, was formulated as a function of the given mean separation between the contacting surfaces for given surfaces and material properties. Based on the contact deformation model, a regression correlation of thermal contact conductance of a single pair shoulder–shoulder contacting asperities was integrated to get total TCC as a function of material properties and mean separation. As contact pressure and thermal contact conductance are all monotonically correlated with the mean separation, the mapping between the pressure and thermal contact conductance can be established by integrating the two parts. Finally, the integrated mechanical–thermal predictive model was compared to an existing predictive model and a series of experimental data. The results were in good agreement, demonstrating the validity of the model.

Author(s):  
D Tang ◽  
D Li ◽  
Y Peng ◽  
Z Du

The thermal contact conductance (TCC) is one of the principal parameter in heat transfer mechanism of tube—fin heat exchangers. Because of the difficulties in experimental measurements, the tube—fin TCC has not been focused deeply. This article presents a novel method in evaluating the TCC of tube—fin heatexchanger. First, the tube—fin contact status is investigated with a finite-element model of tube expansion process. Distribution of contact pressure along the tube—fin interface is obtained from the simulation results. Then, experiments are carried out for the relationship between the contact pressure and the TCC. Combining the experiment result with the contact pressure distribution, the tube—fin TCC can be evaluated. Based on the method, effect of processing factors of the expansion forming process, such as expanding ratio and die geometry, are examined.


Author(s):  
He Peng ◽  
Ning Xu ◽  
Zhansheng Liu

Tighten force has much influence on tie-bolt fastened rotor dynamics. Temperature distribution in tie-bolt fastened rotor results in thermal expansion of rotor and rods. The difference of thermal expansion between rotor and rods causes the variation of bolt load. With considering the thermal contact conductance, the thermal model of tie-bolt fastened rotor was established by finite element method and the axial temperature distribution was obtained. The influences of surface roughness, nominal contact pressure and axial position of contact on axial temperature distribution were analysed. Based on temperature distribution in the tie-bolt fastened rotor, the variation of tighten force was investigated. Results show that nominal contact pressure, surface roughness and axial contact arrange have different influences on the variation of tighten force with temperature.


2004 ◽  
Vol 71 (1) ◽  
pp. 57-68 ◽  
Author(s):  
J. Y. Jang ◽  
M. M. Khonsari

A model is developed to investigate the mechanism of thermoelastic instability (TEI) in tribological components. The model consists of two thermally conducting bodies of finite thickness undergoing sliding contact. Appropriate governing equations are derived to predict the critical speed beyond which the TEI is likely to occur. This model takes into account the surface roughness characteristics of the contacting bodies as well as the thermal contact conductance at the interface. Analytical expressions are provided for the special cases neglecting the disk thickness and the thermal contact conductance. An extensive series of parametric simulations and discussion of the implication of the results are also presented. The simulations show that the difference in material properties and geometry of the two conducting bodies has a pronounced influence on the critical speed. A special case of the model shows that the threshold of TEI critical speed is pushed to a much higher level when the conducting bodies have identical material properties and are geometrically symmetric. It is also shown that the perturbed wave generally tends to move with the body with higher thermal conductivity.


2003 ◽  
Vol 125 (3) ◽  
pp. 394-402 ◽  
Author(s):  
S. Sunil Kumar ◽  
K. Ramamurthi

The effect of surface roughness, waviness and flatness deviations on thermal contact conductance is predicted. Threshold values of the surface parameters which do not adversely influence thermal contact conductance are determined. Flatness deviations less than ten times the average roughness and waviness less than about four times the average roughness do not significantly affect the contact conductance. A correlation is developed for contact conductance in terms of the surface parameters, the material properties and the contact pressure at the joint. Experiments are conducted in vacuum with rough, non-flat and wavy surfaces and the experimental results are demonstrated to agree well with the predictions.


2020 ◽  
Vol 50 ◽  
pp. 418-424 ◽  
Author(s):  
Joonas Ilmola ◽  
Aarne Pohjonen ◽  
Oskari Seppälä ◽  
Jari Larkiola

2006 ◽  
Vol 129 (7) ◽  
pp. 907-911 ◽  
Author(s):  
Chakravarti Madhusudana ◽  
Wui-wai Cheng

The thermal contact conductance (TCC) at the mechanically bonded tube/fin interface of a heat exchanger may be controlled by varying the amount of initial expansion of the tube. However, in this case, the TCC also varies with the temperature because of the differential expansion between the tube and the fin. The objectives of the present study are to determine the improvement in TCC resulting from higher degrees of the tube expansion, to determine the variation in TCC with the maximum temperature, and to estimate the change in contact pressure with the temperature. This paper presents the results of heat transfer experiments on mechanically expanded finned-tube specimens. Experiments were conducted in an atmosphere of nitrogen. The results showed that the TCC is enhanced by increasing the degree of initial expansion. There is a practical limit, however, to the maximum expansion that can be attempted. For the direction of heat flow prevailing in the experiments, the TCC and the contact pressure of every specimen decreased with increasing temperature.


2020 ◽  
Vol 15 ◽  

For the optimization of the annealing process of aluminium coils, simulation of the process is often performed. To simulate the process with higher accuracy, reliable input parameters are required and the thermal conductivity (thermal contact conductance) is one of them. In the present study, the thermal conductivity and thermal contact conductance of AA3003 alloy sheets were measured by a steady state comparative longitudinal heat flow method at different contact pressure. To evaluate the thermal conductance at the interface, thermal resistance network model' was applied. In addition, the surface roughness of the sheets was also investigated. Based on the measurement results, the semi-empirical equation for the relationship between thermal contact conductance and contact pressure was obtained


Sign in / Sign up

Export Citation Format

Share Document