Efficiency of High-Sensitivity Gear Trains, Such as Cycloid Drives

2013 ◽  
Vol 135 (7) ◽  
Author(s):  
Jonathon W. Sensinger

Compact, high torque ratio, high efficiency transmissions are required in many applications, such as robotics. However, compact size and high torque ratios often come at the expense of surprisingly low efficiency. Here we apply Del Castillo's sensitivity framework (Del Castillo, J. M., 2002, “The Analytical Expression of the Efficiency of Planetary Gear Trains,” Mech. Mach. Theory, 37(2), pp. 197–214) to explain the low efficiency of a subset of transmissions that exploit small differences in tooth number between gears to generate high torque ratios. We add adjustment factors for several transmissions within this category, such as cycloids and harmonic drives; demonstrate that the models match empirical results for the case of cycloids across a range of torque ratios, topologies, and roller conditions; and compare and optimize the topologies of the various mechanisms. We demonstrate that for this subset of transmissions, the efficiency approaches a function of the torque ratio.

2013 ◽  
Vol 421 ◽  
pp. 40-45 ◽  
Author(s):  
Long Chang Hsieh ◽  
Hsiu Chen Tang ◽  
Tzu Hsia Chen ◽  
Jhen Hao Gao

3K type and 2K-2H type planetary gear trains can be designed to have high reduction ratios. Due to the reason of power circulation, these two kinds of planetary gear trains with high reduction ratios have low meshing efficiencies. The 2K type planetary gear reducer only contain two ring gears and one carrier, hence it will not have the problem of power circulation and will have better meshing efficiency than 3K type and 2K-2H type planetary gear reducers. Also, in general, the gear reducers with high reduction ratio are compound gear system. The purpose of this paper is to propose 2K type planetary simple gear reducers with high reduction ratios. Based on the concept of train value equation, the kinematic design of 2K type planetary gear trains with high reduction ratio are synthesized. Six 2K type planetary gear reducers are designed to illustrate the kinematic design process. Three of the examples are 2K type planetary gear reducers with simple planet gears. For the 2K type planetary simple gear reducer, there is a problem that is the simple planet gear engages to two ring gears with different tooth number. One example is used to illustrate how to design the two ring gears with different shift coefficient to engage the same planet gear. Based on the proposed process, all 2K type planetary simple gear reducers with high reduction ratios can be synthesized.


2013 ◽  
Vol 284-287 ◽  
pp. 867-871
Author(s):  
Long Chang Hsieh ◽  
Tzu Hsia Chen

Planetary gear trains are commonly used in various transmissions due to the following reasons: compact size, light weight, and multi-degrees of freedom. For example, planetary gear trains can be designed for following functions: gear reducers for power machinery, internal gear hubs for bicycle, gear increasers for wind generator, gear reducers for robot. In general, the reduction of non-coupled planetary gear train is less than 10. The purpose of this paper is to introduce the planetary gear train with high reduction ratio. Coupled planetary gear train can be designed to has high reduction ratio. Hence, this paper focuses on innovative, kinematic, and engineering design of coupled planetary gear train with high reduction ratio. The coupled planetary gear train synthesized in this paper is a planetary gear train with simple planet gears. It can be used as the gear reducer for a robot. Refer to the train value equation, the reduction-ratio equation of coupled planetary gear train is derived for the design purpose. Then, the coupled planetary coupled gear train with simple planet gears is synthesized based on the above reduction-ratio equation. Finally, the corresponding engineering design drawing is accomplished.


Author(s):  
Masao Nakagawa ◽  
Dai Nishida ◽  
Deepak Sah ◽  
Toshiki Hirogaki ◽  
Eiichi Aoyama

Planetary gear trains (PGTs) are widely used in various machines owing to their many advantages. However, they suffer from problems of noise and vibration due to the structural complexity and giving rise to substantial noise, vibration, and harshness with respect to both structures and human users. In this report, the sound level from PGTs is measured in an anechoic chamber based on human aural characteristic, and basic features of sound are investigated. Gear noise is generated by the vibration force due to varying gear tooth stiffness and the vibration force due to tooth surface error, or transmission error (TE). Dynamic TE is considered to be increased because of internal and external meshing. The vibration force due to tooth surface error can be ignored owing to almost perfect tooth surface. A vibration force due to varying tooth stiffness could be a major factor.


2002 ◽  
Vol 124 (4) ◽  
pp. 662-675 ◽  
Author(s):  
V. V. N. R. Prasad Raju Pathapati ◽  
A. C. Rao

The most important step in the structural synthesis of planetary gear trains (PGTs) requires the identification of isomorphism (rotational as well as displacement) between the graphs which represent the kinematic structure of planetary gear train. Previously used methods for identifying graph isomorphism yielded incorrect results. Literature review in this area shows there is inconsistency in results from six link, one degree-of-freedom onwards. The purpose of this paper is to present an efficient methodology through the use of Loop concept and Hamming number concept to detect displacement and rotational isomorphism in PGTs in an unambiguous way. New invariants for rotational graphs and displacement graphs called geared chain hamming strings and geared chain loop hamming strings are developed respectively to identify rotational and displacement isomorphism. This paper also presents a procedure to redraw conventional graph representation that not only clarifies the kinematic structure of a PGT but also averts the problem of pseudo isomorphism. Finally a thorough analysis of existing methods is carried out using the proposed technique and the results in the category of six links one degree-of-freedom are established and an Atlas comprises of graph representations in conventional form as well as in new form is presented.


2012 ◽  
Vol 253-255 ◽  
pp. 2102-2106 ◽  
Author(s):  
Xu Juan Yang ◽  
Zong Hua Wu ◽  
Zhao Jun Li ◽  
Gan Wei Cai

A torsional vibration model of the slewing mechanism of a hydraulic excavator is developed to predict its free vibration characteristics with consideration of many fundamental factors, such as the mesh stiffness of gear pairs, the coupling relationship of a two stage planetary gear trains and the variety of moment of inertia of the input end caused by the motion of work equipment. The natural frequencies are solved using the corresponding eigenvalue problem. Taking the moment of inertia of the input end for example to illustrate the relationship between the natural frequencies of the slewing mechanism and its parameters, based on the simulation results, just the first order frequency varies significantly with the moment of inertia of the input end of the slewing mechanism.


2018 ◽  
Vol 10 (8) ◽  
pp. 168781401879410 ◽  
Author(s):  
Yahui Cui ◽  
Jing Gao ◽  
Xiaomin Ji ◽  
Xintao Zhou ◽  
Haitao Yan

The concept of multi-attribute topological graph is proposed in this article to represent the characteristics of both structure and state for typical one-degree-of-freedom planar spur closed planetary gear trains. This method is well applied in power flow analysis and provides a graphical view for the types, values, directions, and transmission relationship of power flow, especially for the recirculation power representation. Furthermore, a template model of multi-attribute topological graph for closed planetary gear trains is also presented, which would be helpful to the multi-attribute topological graph generation for some certain types of closed planetary gear trains just by changing symbols in the template model. A corresponding software is also developed to make the analysis process more convenient. By inputting different parameters, the different visual results can be obtained automatically, thus benefiting engineers in conceptual design.


Sign in / Sign up

Export Citation Format

Share Document