Novel Spacer Design Using Topology Optimization in a Reverse Osmosis Channel

2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Seungjae Oh ◽  
Semyung Wang ◽  
Minkyu Park ◽  
Joon Ha Kim

The objective of this study is to design spacers using topology optimization in a two-dimensional (2D) crossflow reverse osmosis (RO) membrane channel in order to improve the performance of RO processes. This study is the first attempt to apply topology optimization to designing spacers in a RO membrane channel. The performance was evaluated based on the quantity of permeate flux penetrating both the upper and lower membrane surfaces. Here, Navier–Stokes and convection-diffusion equations were employed to calculate the permeate flux. The nine reference models, consisting of combinations of circle, rectangle, and triangle shapes and zig-zag, cavity, and submerged spacer configurations were then simulated using finite element method so that the performance of the model designed by topology optimization could be compared to the reference models. As a result of topology optimization with the allowable pressure drop changes in the channel, characteristics required of the spacer design were determined. The spacer design based on topology optimization was then simplified to consider manufacturability and performance. When the simplified design was compared to the reference models, the new design displayed a better performance in terms of permeate flux and wall concentration at the membrane surface.

Author(s):  
Seungjae Oh ◽  
Semyung Wang ◽  
Minkyu Park ◽  
Joonha Kim

The objective of this study is to design spacers using fluid topology optimization in 2D crossflow Reverse Osmosis (RO) membrane channel to improve the performance of RO processes. This study is an initial attempt to apply topology optimization to designing spacers in RO membrane channel. The performance was evaluated by the quantity of permeate flux penetrating both upper and lower membrane surfaces. A coupled Navier-Stokes and Convection-Diffusion model was employed to calculate the permeate flux. To get reliable solutions, stabilization methods were employed with standard finite element method. The nine reference models which consist of the combination of circle, rectangular, triangle shape and zigzag, cavity, submerge configuration of spacers were simulated. Such models were compared with new model designed by topology optimization. The permeate flux at both membrane surfaces was determined as an objective function. In addition, permissible pressure drop along the channel and spacer volume were used as constraints. As a result of topology optimization as the permissible pressure drop changes in channel, characteristics of spacer design development was founded. Spacer design based on topology optimization was reconstructed to a simple one considering manufactuability and characteristics of development spacer design. When a simplified design was compared with previous 9 models, new design has a better performance in terms of permeate flux and wall concentration at membrane surface.


REAKTOR ◽  
2011 ◽  
Vol 11 (2) ◽  
pp. 91 ◽  
Author(s):  
I.N. Widiasa ◽  
I Gede Wenten

An integrated membrane system combining reverse osmosis (RO) and electrodeionization (EDI) is used for simultaneous sugar concentration and salts removal from a synthetic dilute sugar solution as a model of sugar-containing wastewater. The RO system uses a thin film composite RO membrane (Saehan CSM, RE1812-60). Meanwhile, the EDI stack has two diluted compartments, one concentrated compartment, one anode compartment, and one cathode compartment. Commercially available cation exchange membrane (MC-3470) and anion exchange membrane (MA-3475) are used as ionic selective barriers of the EDI stack. Both diluate and concentrate compartments are filled with mixed ion exchange resins (purolite strong acid cation exchange, C-100E and strong base type I anion resins, A-400). Two different operation modes, i.e. RO-EDI and EDI-RO, were assessed. The experimental results show that the observed sugar rejection of RO membrane is more than 99.9% and there is no sugar loss in the EDI stack. This indicates that the hybrid process allows almost total sugar recovery. In addition, significant reduction of salts content from the concentrated sugar solution is obtained. From permeate flux and permeate purity points of view, however, the EDI-RO configuration seems superior to the RO-EDI configuration. It should be emphasized that scale formation on the membrane surface of the concentrate compartment side has to be controlled.


2013 ◽  
Vol 789 ◽  
pp. 531-537
Author(s):  
Erna Yuliawati ◽  
Ahmad Fauzi Ismail

Refinery wastewater treatment is needed especially in the oil-producing arid regions such as oil refineries due to water scarcity. One of potentially applicable process to treat refinery wastewater is a submerged membrane technology. However, the application of submerged membrane systems for industrial wastewater treatment is still in its infancy due to significant variety in wastewater composition and high operational costs. Aim of this study was to investigate ultrafiltration (UF) membrane morphology and performance for refinery produced wastewater treatment. Submerged UF bundle was equipped using polyvinylidene fluoride (PVDF) hollow fibers, which added by dispersing lithium chloride monohydrate (LiCl.H2O) and titanium dioxide (TiO2). The comparison of morphological and performance tests was conducted on prepared PVDF ultrafiltration membranes. Distinctive changes were observed in membrane characteristics in term of membrane wettability, tensile testing and roughness measurement. Mean pore size and surface porosity were calculated based on permeate flux. Fouling characteristics for hydrophilic PVDF hollow fibers fouled with suspended solid matter was also investigated. Mixed liquor suspended solid (MLSS) of 3 g/L and 4.5 g/L were assessed by using submerged PVDF membrane with varied air bubble flow rates. Results showed that effect of air bubbles flow rate of 2.4 ml/min increased flux, total suspended solids (TSS) and sulfide removal of 148.82 L/m2h, 99.82 % and 89.2%, respectively due to increase of turbulence around fibers, which exerts shear stress to minimize particles deposited on membrane surface. It was concluded that submerged ultrafiltration is an available option to minimize energy process for treating such wastewater solution.


2014 ◽  
Vol 68 (5) ◽  
Author(s):  
Azry Borhan ◽  
Muhammad Muhibbudin Mat Johari

Monoethanolamine (MEA) has been vastly used for the removal of carbon dioxide (CO2) in natural gas processing plant. However, during the absorption-desorption process and maintenance activities, a small amount of amine get carries over and discharged into the effluent wastewater stream. Due to its high Chemical Oxygen Demand (COD) and require large volume of water for dilution, therefore treatment of MEA contaminated wastewater is a major concern in most amine sweetening plants. In this research, MEA wastewater generated from PETRONAS Fertilizer Kedah Sdn. Bhd (PFK) was treated via AFC99 tubular thin film composite polyamide Reverse Osmosis (RO) membrane. The effect of operating parameter (transmembrane pressure (TMP), feed concentration and pH) towards permeate flux and MEA rejection were studied to obtain the optimum operating conditions. Experimental results showed that AFC99 membrane is able to reject MEA up to 98% when operated at TMP of 20 bars, feed concentration of 300 ppm and pH of 4. This work shows that the RO membrane was feasible and desirable to be used for removal of MEA contaminants from wastewater. Besides, the treated water fulfills the watering standards.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
H. Abdallah ◽  
M. S. Shalaby ◽  
A. M. H. Shaban

This study describes the preparation, characterization, and evaluation of performance of blend Polyethersulfone (PES) with manganese(III) acetylacetonate Mn(acac)3to produce reverse osmosis blend membrane. The manganese(III) acetylacetonate nanoparticles were prepared by a simple and environmentally benign route based on hydrolysis of KMnO4followed by reaction with acetylacetone in rapid stirring rate. The prepared nanoparticle powder was dissolved in polymer solution mixture to produce RO PES/Mn(acac)3blend membrane, without any treatment of Polyethersulfone membrane surface. The membrane morphology, mechanical properties, and performance were presented. The scanning electron microscopy (SEM) images have displayed a typical asymmetric membrane structure with a dense top layer due to the migration of Mn(acac)3nanoparticles to membrane surface during the phase inversion process. Contact angle measurements have indicated that the hydrophilicity of the membrane was improved by adding Mn(acac)3. AFM images have proved excellent pores size distribution of blend membrane and lower surface roughness compared with bare PES. The desalination test was applied to blend membrane, where the blend membrane provided good performance; particularly, permeate flux was 24.2 Kg/m2·h and salt rejection was 99.5%.


2017 ◽  
Vol 76 (9) ◽  
pp. 2503-2514 ◽  
Author(s):  
Zhidong Wang ◽  
Kuizu Su ◽  
Tong Shu ◽  
Weihong Wang

Abstract It is widely known that the accumulation of solid matter forming a cake layer on the membrane surface is one of the major limitations of the filtration performance in submerged membrane bioreactors (SMBR). This study is focused on the influence of the cake porosity of different particle microscopic packed structures on the filtration performance of hollow fiber systems. An integrated model based on the finite element method to simulate numerically the flow in an SMBR is presented. The model coupled the Navier–Stokes and Darcy Brinkman equations to simulate a complete filtration run. The cake growth took into consideration not only the deposition with local filtration velocity but also the effect of aeration scouring. A novel solution of mesh deformation was adopted to investigate transient cake growth along the fiber. Comparisons between simulations and experiments are in good agreement. The results show that a higher porosity particle packed structure causes non-uniform filtration and cake thickness but also higher permeate flux. Meanwhile, the proportion of cake resistance to total resistance increases with the decrease of porosity.


2016 ◽  
Vol 2 (1) ◽  
pp. 174-185 ◽  
Author(s):  
L. Lunevich ◽  
P. Sanciolo ◽  
A. Smallridge ◽  
S. R. Gray

Silica scale formation on reverse osmosis (RO) membrane surface is a significant problem for operation of high recovery RO desalination plant.


Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 293
Author(s):  
Kunal Olimattel ◽  
Jared Church ◽  
Woo Hyoung Lee ◽  
Karin Y. Chumbimuni-Torres ◽  
Lei Zhai ◽  
...  

Ultrafiltration (UF) is a low-pressure membrane that yields higher permeate flux and saves significant operating costs compared to high-pressure membranes; however, studies addressing the combined improvement of anti-organic and biofouling properties of UF membranes are lacking. This study investigated the fouling resistance and antimicrobial property of a UF membrane via silver phosphate nanoparticle (AgPNP) embedded polyelectrolyte (PE) functionalization. Negatively charged polyacrylic acid (PAA) and positively charged polyallylamine hydrochloride (PAH) were deposited on the membrane using a fluidic layer-by-layer assembly technique. AgPNPs were immobilized within the crosslinked “bilayers” (BL) of PAH/PAA. The effectiveness of AgPNP immobilization was confirmed by microprofile measurements on membrane surfaces using a solid contact Ag micro-ion-selective electrode. Upon stable and uniform BL formation on the membrane surface, the permeate flux was governed by a combined effect of PAH/PAA-derived hydrophilicity and surface/pore coverage by the BLs “tightening” of the membrane. When fouled by a model organic foulant (humic acid), the functionalized membrane exhibited a lower flux decline and a greater flux recovery due to the electrostatic repulsion imparted by PAA when compared to the unmodified membrane. The functionalization rendered antimicrobial property, as indicated by fewer attachments of bacteria that initiate the formation of biofilms leading to biofouling.


2010 ◽  
Vol 61 (8) ◽  
pp. 2035-2041 ◽  
Author(s):  
H. Mo ◽  
H. Y. Ng

This study was to experimentally investigate the performance and organic fouling behaviour in a 1-m long RO membrane channel with or without spacer for desalting. It was found that local permeate flux distributed heterogeneously along the long membrane channel without a spacer inserted due to exponential growth of concentration polarization, which also resulted in decreasing salt rejection and increasing organic fouling along the membrane channel in the downstream direction. This heterogeneity could be lessened by inserting a spacer into the channel, which mitigated concentration polarization due to the enhanced turbulence caused by a spacer, especially at the downstream portion of the channel. However, in the upstream of the channel, inserting a spacer exerted an additional vertical resistance which might counteract the effect of concentration polarization mitigation by a spacer and caused a lower permeate flux. This suggests that it is necessary to consider the integral effect of spacer for designing an RO membrane module and an overall RO system in order to prevent extra resistance, reduce concentration polarization and membrane fouling.


2018 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
I N Widiasa ◽  
N Sinaga ◽  
D Ariyanti

Improving performance of low pressure reverse osmosis systems by intermittent autoflushing Scaling formation on the membrane surface in the form of calcium carbonate, calcium sulphate, silica, and/or magnesium silicate is a main problem of the reverse osmosis (RO) application for upgrading low grade water. Scaling in RO system is generally controlled by softening the feed water, limiting the recovery and/or the addition of antiscalants which is impractical for household RO system. In this work, the feasibility of intermittent autoflushing to prevent scale formation in household RO systems was investigated. All experiments were carried out using commercially available RO membrane (CSM RE-1812LP) which operated for 6 hours under operating pressure 5 kg/cm2 and total recycle operating mode. Model solution of feed water contain CaCl2 and NaHCO3 were prepared to meet various LSI values in the range of 0 to 1.5. Duration and interval time of autoflush were in the range of 60 to 15 s and 5 to 60 min respectively. The results shown that the permeate flux of the system which operated using intermittent autoflushing relatively stable. It is emphasized that intermittent autoflushing may improve the performance of household reverse osmosis systems.Keywords: Autoflushing, scaling, physical cleaning, reverse osmosis  Abstrak Pembentukan kerak (scaling) pada permukaan membran berupa kerak kalsium karbonat, kalsium sulfat, silika dan atau magnesium silikat merupakan permasalahan utama pada aplikasi sistem membran reverse osmosis (RO) pada proses pemurnian air. Scaling pada sistem RO umumnya dikontrol dengan melakukan pretreatment terhadap air umpan seperti softening, menambahkan zat antiscalant pada saat proses pemisahan serta membatasi tingkat recovery, dimana proses-proses tersebut tidak praktis apabila diaplikasikan pada sistem RO skala rumah tangga. Penelitian ini bertujuan untuk melihat kemungkinan metode intermittent autoflush dapat diaplikasikan untuk menghambat terjadinya scaling pada sistem RO skala rumah tangga. Penelitian ini dilakukan dengan menggunakan satu unit membran spiral wound jenis CSM RE-1812LP yang dioperasikan dengan tekanan operasi 5 kg/cm2 dan waktu operasi ± 6 jam. Larutan umpan sintesis dibuat dengan melarutkan CaCl2 dan NaHCO3 hingga nilai LSI mencapai kisaran 0-1,5. Durasi dan interval dari metode intermittent autoflush divariasikan pada kisaran 60-15 detik dan 5-60 menit. Hasil penelitian menunjukkan bahwa fluks permeat relatif stabil pada sistem RO yang menggunakan metode intermittent autoflush. Hal ini menandakan bahwa metode intermittent autoflush ini dimungkinkan untuk meningkatkan kinerja dari sistem RO skala rumah tangga.Kata Kunci: Autoflushing, scaling, physical cleaning, reverse osmosis


Sign in / Sign up

Export Citation Format

Share Document