Effect of Crystallinity on the Performance of P3HT/PC70BM/n-Dodecylthiol Polymer Solar Cells

2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Nidal Abu-Zahra ◽  
Mahmoud Algazzar

In this research, n-dodecylthiol was added to P3HT/PC70BM polymer solar cells (PSCs) to improve the crystallinity of P3HT and enhance the phase separation of P3HT/PC70BM. Crystallinity of P3HT:PC70BM doped with 0–5% by volume of n-dodecylthiol was measured using X-ray diffraction (XRD) and differential scanning calorimetry (DSC) techniques. Both methods showed improvement in crystallinity, which resulted in improving the power conversion efficiency (PCE) of polymer solar cells by 33%. In addition, annealing at 150 °C for 30 min showed further improvement in crystallinity with n-dodecylthiol concentration up to 2%. The highest power conversion efficiency of 3.21% was achieved with polymer crystallites size L of 11.2 nm, after annealing at 150 °C for 30 min under a vacuum atmosphere. The smaller crystallite size suggests a shorter path of the charge carriers between P3HT backbones, which could be beneficial to getting a higher short circuit current in the devices made with the additive. Kinetics study of P3HT:PC70BM crystallinity using Avrami model showed a faster crystallization rate (1/t0.5) at higher temperatures.

2014 ◽  
Vol 2 (43) ◽  
pp. 9303-9310 ◽  
Author(s):  
Yupei Zhang ◽  
Jingyu Hao ◽  
Xue Li ◽  
Shufen Chen ◽  
Lianhui Wang ◽  
...  

Mixed Au nanoparticles (NPs) with wide absorption spectra of 300–1000 nm and three absorption peaks of 520, 600, and 770 nm are assembled onto the ITO anode in polymer solar cells to significantly improve the power conversion efficiency and short-circuit current by factors of 24.2% and 18.6%.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Hanyu Wang ◽  
Xiao Wang ◽  
Pu Fan ◽  
Xin Yang ◽  
Junsheng Yu

The effect of molecular doping with TIPS-pentacene on the photovoltaic performance of polymer solar cells (PSCs) with a structure of ITO/ZnO/poly(3-hexylthiophene-2,5-diyl) (P3HT) : [6,6]-phenyl C71-butyric acid methyl ester (PC71BM) : TIPS-pentacene/MoOx/Ag was systematically investigated by adjusting TIPS-pentacene doping ratios ranged from 0.3 to 1.2 wt%. The device with 0.6 wt% TIPS-pentacene exhibited the enhanced short-circuit current and fill factor by 1.23 mA/cm2and 7.8%, respectively, resulting in a maximum power conversion efficiency of 4.13%, which is one-third higher than that of the undoped one. The photovoltaic performance improvement was mainly due to the balanced charge carrier mobility, enhanced crystallinity, and matched cascade energy level alignment in TIPS-pentacene doped active layer, resulting in the efficient charge separation, transport, and collection.


2020 ◽  
pp. 2150096
Author(s):  
Jing Gao ◽  
Chujian Liao ◽  
Yanqun Guo ◽  
Difan Zhou ◽  
Zhigang Zeng ◽  
...  

The perovskite membrane with large particle size, uniform coverage and high quality is the prerequisite for the preparation of efficient and stable perovskite solar cells. Various additives have been used to increase the grain size and improve the film morphology and crystal quality. In this paper, methylammonium chloride (MACl) was proposed to obtain high crystalline quality of [Formula: see text] perovskite absorption layer. The results show that the adding ammonium methyl chloride into the precursor of tricationic perovskite not only passivates surface defects to form high-quality and large-grain perovskite films, but also facilitates the formation of pure [Formula: see text]-phase [Formula: see text]. Meanwhile, the designed perovskite precursor solutions were used to fabricate mesoporous perovskite solar cells (PSCs). Owing to the perovskite layer consisting of optimized MACl doping, the short-circuit current density [Formula: see text] of PSCs reaches 23.81 mA/cm2, which is 2.73 mA/cm2 higher than the primary [Formula: see text] based on PSCs. The obtained power conversion efficiency (PCE) increases from 13.67% to 17.59%.


2013 ◽  
Vol 667 ◽  
pp. 300-306 ◽  
Author(s):  
Fazlinashatul Suhaidah Zahid ◽  
Puteri Sarah Mohamad Saad ◽  
Mohamed Zahidi Musa ◽  
Mohamad Rusop Mahmood

The photovoltaic properties of organic solar cells based on hybrid poly [2-methoxy-5-(2-ethylhexyloxy-p-phenylenevinylen) (MEH-PPV) and anatase titanium dioxide (TiO2) nanoparticles as a function of TiO2 concentration were investigated. Synthesis of TiO2 nanoparticles was performed by sol-gel immerses heated method and been used as a filler in MEH-PPV polymer matrix. The hybrid MEH-PPV: TiO2 solar cells exhibited increased in light absorption and power conversion efficiency than the pristine organic solar cell. By further optimizing the concentration of TiO2 nanoparticles, the short-circuit current of the hybrid MEH-PPV: TiO2 was reached up to 0.004823 (mA/cm2) and the corresponding power conversion efficiency was 0.000378% was obtained under Air Mass 1.5 illumination which was more than 80% higher compared to the device without TiO2 nanoparticles. This indicates by embedded TiO2 nanoparticles in MEH-PPV matrix encouraging the charge transportation in the active layer of organic solar cells device.


2019 ◽  
Vol 7 (27) ◽  
pp. 16190-16196 ◽  
Author(s):  
Jingnan Wu ◽  
Yuan Meng ◽  
Xia Guo ◽  
Lei Zhu ◽  
Feng Liu ◽  
...  

A new narrow bandgap polymer acceptor (PN1) based on a fused-ring small molecule acceptor as the core building block was designed and developed. The optimal all-polymer solar cell based on the blend of PM6 and PN1 achieved an outstanding power conversion efficiency of 10.5% with a high open-circuit voltage of 1.0 V, a short circuit current density of 15.2 mA cm−2 and a fill factor of 0.69.


2014 ◽  
Vol 2 (38) ◽  
pp. 8142-8151 ◽  
Author(s):  
Rajni Sharma ◽  
Firoz Alam ◽  
A. K. Sharma ◽  
V. Dutta ◽  
S. K. Dhawan

Graphene-assisted charge transportation doubles the power conversion efficiency of PCPDTBT:PCBM:ZnO-based bulk heterojunction solar cells.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhenrong Jia ◽  
Shucheng Qin ◽  
Lei Meng ◽  
Qing Ma ◽  
Indunil Angunawela ◽  
...  

AbstractTandem organic solar cells are based on the device structure monolithically connecting two solar cells to broaden overall absorption spectrum and utilize the photon energy more efficiently. Herein, we demonstrate a simple strategy of inserting a double bond between the central core and end groups of the small molecule acceptor Y6 to extend its conjugation length and absorption range. As a result, a new narrow bandgap acceptor BTPV-4F was synthesized with an optical bandgap of 1.21 eV. The single-junction devices based on BTPV-4F as acceptor achieved a power conversion efficiency of over 13.4% with a high short-circuit current density of 28.9 mA cm−2. With adopting BTPV-4F as the rear cell acceptor material, the resulting tandem devices reached a high power conversion efficiency of over 16.4% with good photostability. The results indicate that BTPV-4F is an efficient infrared-absorbing narrow bandgap acceptor and has great potential to be applied into tandem organic solar cells.


Sign in / Sign up

Export Citation Format

Share Document