Assisting and Opposing Combined Convective Heat Transfer and Nanofluids Flows Over a Vertical Forward Facing Step

Author(s):  
H. A. Mohammed ◽  
Omar A. Hussein

Numerical simulations of two-dimensional (2D) laminar mixed convection heat transfer and nanofluids flows over forward facing step (FFS) in a vertical channel are numerically carried out. The continuity, momentum, and energy equations were solved by means of a finite volume method (FVM). The wall downstream of the step was maintained at a uniform wall heat flux, while the straight wall that forms the other side of the channel was maintained at constant temperature equivalent to the inlet fluid temperature. The upstream walls for the FFS were considered as adiabatic surfaces. The buoyancy assisting and buoyancy opposing flow conditions are investigated. Four different types of nanoparticles, Al2O3, CuO, SiO2, and ZnO with different volumes' fractions in the range of 1–4% and different nanoparticle diameters in the range of 25–80 nm, are dispersed in the base fluid (water) are used. In this study, several parameters, such as different Reynolds numbers in the range of 100 < Re < 900, and different heat fluxes in the range of 500 ≤ qw ≤ 4500 W/m2, and different step heights in the range of 3 ≤ S ≤ 5.8 mm, are investigated to identify their effects on the heat transfer and fluid flow characteristics. The numerical results indicate that the nanofluid with SiO2 has the highest Nusselt number compared with other nanofluids. The recirculation region and the Nusselt number increase as the step height, Reynolds number, and the volume fraction increase, and it decreases as the nanoparticle diameter increases. This study has revealed that the assisting flow has higher Nusselt number than opposing flow.

2013 ◽  
Vol 388 ◽  
pp. 185-191 ◽  
Author(s):  
Hussein A. Mohammed ◽  
Mohsen Golieskardi ◽  
K.M. Munisamy ◽  
Mazlan A. Wahid

Numerical simulations of two dimensional laminar combined convection flows using nanofluids over forward facing step with a blockage are analyzed. The continuity, momentum and energy equations are solved using finite volume method (FVM) and the SIMPLE algorithm scheme is applied to examine the effect of the blockage on the heat transfer characteristics. In this project, several parameters such as different types of nanofluids (Al2O3, SiO2, CuO and ZnO), different volume fraction in the range of 1% - 4%, different nanoparticles diameter in the range of 25nm-80nm were used. Effects of different shapes of blockage (Circular, Square and Triangular) were studied. The numerical results indicated that SiO2nanofluid has the highest Nusselt number. The Nusselt number increased as the volume fraction and Reynolds number increase, while it decreases as the nanoparticles diameter increases. Circular blockage produced higher results compared to triangular and square one.


1968 ◽  
Vol 90 (1) ◽  
pp. 51-54 ◽  
Author(s):  
W. A. Beckman

The one-dimensional steady-state temperature distribution within an isotropic porous bed subjected to a collimated and/or diffuse radiation heat flux and a transparent flowing fluid has been determined by numerical methods. The porous bed was assumed to be nonscattering and to have a constant absorption coefficient. Part of the radiation absorbed by the porous bed is reradiated and the remainder is transferred to the fluid by convection. Due to the assumed finite volumetric heat transfer coefficient, the bed and fluid have different temperatures. A bed with an optical depth of six and with a normal incident collimated radiation heat flux was investigated in detail. The radiation incident on the bed at the fluid exit was assumed to originate from a black surface at the fluid exit temperature. The investigation covered the range of incident diffuse and collimated radiation heat fluxes expected in a nonconcentrating solar energy collector. The results are presented in terms of a bed collection efficiency from which the fluid temperature rise can be calculated.


2017 ◽  
Vol 21 (6 Part A) ◽  
pp. 2431-2442
Author(s):  
Arash Lavasani ◽  
Mousa Farhadi ◽  
Darzi Rabienataj

In the present study, the effect of suspension of nanoparticle on mixed convection flow is investigated numerically in lid driven cavity with fins on its hot surface. Study is carried out for Richardson numbers ranging from 0.1 to 10, fin(s) height ratio change from 0.05 to 0.15 and volume fraction of nanoparticles from 0 to 0.03, respectively. The thermal conductivity ratio (kfin/kf) is equal to 330 and Grashof number is assumed to be constant (104) so that the Richardson numbers changes with Reynolds number. Results show that the heat transfer enhances by using nanofluid for all studied Richardson numbers. Adding fins on hot wall has different effects on heat transfer depend to Richardson number and height of fins. Use of low height fin in flow with high Richardson number enhances the heat transfer rate while by increasing the height of fin the heat transfer reduces even lower than it for pure fluid. The overall enhancement in Nusselt number by adding 3% nanoparticles and 3 fins is 54% at Ri=10. They cause reduction of Nusselt Number by 25% at Ri=0.1. Higher fins decrease the heat transfer due to blocking fluid at corners of fins.


2021 ◽  
Vol 321 ◽  
pp. 04014
Author(s):  
Hussein Togun

In this paper, 3D Simulation of turbulent Fe3O4/Nanofluid annular flow and heat transfer in sudden expansion are presented. k-ε turbulence standard model and FVM are applied with Reynolds number different from 20000 to 50000, enlargement ratio (ER) varied 1.25, 1.67, and 2, , and volume concentration of Fe3O4/Nanofluid ranging from 0 to 2% at constant heat flux of 4000 W/m2. The main significant effect on surface Nusselt number found by increases in volume concentration of Fe3O4/Nanofluid for all cases because of nanoparticles heat transport in normal fluid as produced increases in convection heat transfer. Also the results showed that suddenly increment in Nusselt number happened after the abrupt enlargement and reach to maximum value then reduction to the exit passage flow due to recirculation flow as created. Moreover the size of recirculation region enlarged with the rise in enlargement ratio and Reynolds number. Increase of volume Fe3O4/nanofluid enhances the Nusselt number due to nanoparticles heat transport in base fluid which raises the convection heat transfer. Increase of Reynolds number was observed with increased Nusselt number and maximum thermal performance was found with enlargement ratio of (ER=2) and 2% of volume concentration of Fe3O4/nanofluid. Further increases in Reynolds number and enlargement ratio found lead to reductions in static pressure.


Author(s):  
M Ghazvini ◽  
M A Akhavan-Behabadi ◽  
M Esmaeili

The present article focuses on analytical and numerical study on the effect of viscous dissipation when nanofluid is used as the coolant in a microchannel heat sink (MCHS). The nanofluid is made from CuO nanoparticles and water. To analyse the MCHS, a modified Darcy equation for the fluid and two-equation model for heat transfer between fluid and solid sections are employed in porous media approach. In addition, to deal with nanofluid heat transfer, a model based on the Brownian motion of nanoparticles is used. The model evaluates the thermal conductivity of nanofluid considering the thermal boundary resistance, nanoparticle diameter, volume fraction, and the fluid temperature. At first, the effects of particle volume fraction on temperature distribution and overall heat transfer coefficient are investigated with and without considering viscous dissipation. After that, the influence of different channel aspect ratios and porosities is studied. The results show that for nanofluid flow in microchannels, the viscous dissipation can be neglected for low volume fractions and aspect ratios only. Finally, the effect of porosity and Brinkman number on the overall Nusselt number is studied, where asymptotic behaviour of the Nusselt number is observed and discussed from the energy balance point of view.


2020 ◽  
Author(s):  
Sattar Aljobair ◽  
Akeel Abdullah Mohammed ◽  
Israa Alesbe

Abstract The natural convection heat transfer and fluid flow characteristic of water based Al2O3 nano-fluids in a symmetrical and unsymmetrical corrugated annulus enclosure has been studied numerically using CFD. The inner cylinder is heated isothermally while the outer cylinder is kept constant cold temperature. The study includes eight models of corrugated annulus enclosure with constant aspect ratio of 1.5. The governing equations of fluid motion and heat transfer are solved using stream-vorticity formulation in curvilinear coordinates. The range of solid volume fractions of nanoparticles extends from PHI=0 to 0.25, and Rayleigh number varies from 104 to 107. Streamlines, isotherms, local and average Nusselt number of inner and outer cylinder has been investigated in this study. Sixty-four correlations have been deduced for the average Nusselt number for the inner and outer cylinders as a function of Rayleigh number have been deduced for eight models and five values of volume fraction of nano particles with an accuracy range 6-12 %. The results show that, the average heat transfer rate increases significantly as particle volume fraction and Rayleigh number increase. Also, increase the number of undulations in unsymmetrical annuli reduces the heat transfer rates which remain higher than that in symmetrical annuli. There is no remarkable change in isotherms contour with increase of volume fraction of nanofluid.


Author(s):  
Majid Molki

Turbulent heat transfer for flow of water-air mixture driven by moving walls in a cubical heat sink is investigated. One wall is maintained at an elevated temperature, while the vertical walls are at a low temperature. The cubical enclosure functions as a heat sink using water-air mixture with no phase change. Different arrangements for wall motion are considered, which include 1 to 4 moving walls. As the number of moving walls increases, the flow and heat transfer become more complex. In general, the flow reveals complex and multi-scale structures with an unsteady and evolving nature. The larger structure of the flow is resolved using Large Eddy Simulation, while the sub-grid scales are captured by the dynamic k-equation eddy-viscosity model. The focus of this work is on thermal field and heat transfer as affected by the complex flow field generated by multiple moving walls. The results indicate that the Nusselt number for the heat sink varies from 5202.8 to 7356.1, depending on the number of moving walls. Contours of fluid temperature, liquid volume fraction, local and average values of Nusselt number are among the results presented in this paper.


2019 ◽  
Vol 30 (12) ◽  
pp. 1950105 ◽  
Author(s):  
Yuan Ma ◽  
Zhigang Yang

Lattice Boltzmann method (LBM) was used to simulate two-dimensional MHD Al2O3/water nanofluid flow and heat transfer in an enclosure with a semicircular wall and a triangular heating obstacle. The effects of nanoparticle volume fraction ([Formula: see text]), Rayleigh number [Formula: see text], Hartmann number [Formula: see text] and heating obstacle position (Cases 1–7) on flow pattern, temperature distribution and rate of heat transfer were investigated. The results show that with the enhancing Rayleigh number, the increasing nanoparticle volume fraction and the reducing Hartmann number, an enhancement in the average Nusselt number and the heat transfer appeared. The effect of Ha on the average Nu increases by increasing the Ra. It can also be found that the action of changing the heating obstacle position on the convection heat transfer is more important than that on the conduction heat transfer. The higher obstacle position in Cases 6 and 7 leads to the small value of the average Nusselt number. Moreover, the effect of Ha on average Nu in Case 1 at [Formula: see text] is more significant than other cases because the flow pattern in Case 1 is changed as increasing Ha.


2012 ◽  
Vol 16 (5) ◽  
pp. 1317-1323 ◽  
Author(s):  
Ching-Chang Cho ◽  
Her-Terng Yau ◽  
Cha’o-Kuang Chen

This paper investigates the natural convection heat transfer enhancement of Al2O3-water nanofluid in a U-shaped cavity. In performing the analysis, the governing equations are modeled using the Boussinesq approximation and are solved numerically using the finite-volume numerical method. The study examines the effects of the nanoparticle volume fraction, the Rayleigh number and the geometry parameters on the mean Nusselt number. The results show that for all values of the Rayleigh number, the mean Nusselt number increases as the volume fraction of nanoparticles increases. In addition, it is shown that for a given length of the heated wall, extending the length of the cooled wall can improve the heat transfer performance.


Author(s):  
Mohd. Asif ◽  
Amit Dhiman

Abstract The flow of hybrid Alumina-Copper/Water nanofluid with mixed convection heat transfer from multiple square cylinders arranged in three different types of arrays, namely equilateral triangle (ET), rotated square (RS), and rotated rhombus (RR) in a heat exchanger has never been studied before the present study. Navier-Stokes and energy equations with a periodic condition in transverse direction for three array types having the same porosity are solved with finite volume methodology. The combined effect of aiding buoyancy (Richardson number Ri 0-2), configuration of square cylinders, and hybrid nanoparticle volume fraction (0-0.06) on flow dynamics and their impact on the overall heat transfer phenomenon through three different array configurations is thoroughly elucidated. The arrays' overall drag and friction coefficient increases with an increase in the strength of aiding buoyancy and nanoparticle volume fraction. An increment in Ri, and nanoparticle volume fraction, causes thermal boundary layer thinning and results in higher heat transfer rates across three arrays. With an increase in Ri from 0 to 2 at a nanoparticle volume fraction of 0.06, mean Nusselt number of ET, RS and RR arrays is increased by 161%, 5% and 32% respectively. While, with an increase in nanoparticle volume fraction from 0 to 0.06 at Ri=2, mean Nusselt number of ET, RS and RR arrays is augmented by 17%, 6% and 9% respectively. Finally, the efficient array configuration in terms of fluid-thermal behavior is proposed to design various heat exchange systems under differing operating conditions.


Sign in / Sign up

Export Citation Format

Share Document