Exhaust Pressure Estimation Using a Diesel Particulate Filter Mass Flow Model in a Light-Duty Diesel Engine Operated With Dual-Loop Exhaust Gas Recirculation and Variable Geometry Turbocharger Systems

Author(s):  
Hyunjun Lee ◽  
Manbae Han ◽  
Jeongwon Sohn ◽  
Myoungho Sunwoo

This paper presents a novel method to estimate an exhaust pressure at 357 different steady-state engine operating conditions using a diesel particulate filter (DPF) mass flow model to precisely control the air quantity for a light-duty diesel engine operated with dual-loop exhaust gas recirculation (EGR) and variable geometry turbocharger (VGT) systems. This model was implemented on a 32 bit real-time embedded system and evaluated through a processor-in-the-loop-simulation (PILS) at two transient engine operating conditions. And the proposed model was validated in a vehicle. By applying Darcy's law, the DPF mass flow model was developed and shows a root mean square error (RMSE) of 3.7 g/s in the wide range of the DPF mass flow and above 99% linear correlation with actual values. With such reasonable uncertainties of the DPF mass flow model, the exhaust pressure was estimated via the application of a nonlinear coordinate transformation to the VGT model. The DPF mass flow based exhaust pressure estimation exhibits below 6% error of the exhaust pressure under steady-state conditions. The method was also validated through the PILS and the vehicle test under transient conditions. The results show a reasonable accuracy within 10% error of the exhaust pressure.

Author(s):  
Yeongseop Park ◽  
Inseok Park ◽  
Joowon Lee ◽  
Kyunghan Min ◽  
Myoungho Sunwoo

This paper investigates the design of model-based feedforward compensators for exhaust gas recirculation (EGR) and variable geometry turbocharger (VGT) systems using air path models for a common-rail direct injection (CRDI) diesel engine to cope with the nonlinear control problem. The model-based feedforward compensators generate set-positions of the EGR valve and the VGT vane to track the desired mass air flow (MAF) and manifold absolute pressure (MAP) with consideration of the current engine operating conditions. In the best case, the rising time to reach 90% of the MAF set-point was reduced by 69.8% compared with the look-up table based feedforward compensators.


Author(s):  
Seungwoo Hong ◽  
Inseok Park ◽  
Jaewook Shin ◽  
Myoungho Sunwoo

This paper presents a simplified decoupler-based multivariable controller with a gain scheduling strategy in order to deal with strong nonlinearities and cross-coupled characteristics for exhaust gas recirculation (EGR) and variable geometry turbocharger (VGT) systems in diesel engines. A feedback controller is designed with the gain scheduling strategy, which updates control gains according to engine operating conditions. The gain scheduling strategy is implemented by using a proposed scheduling variable derived from indirect measurements of the EGR mass flow, such as the pressure ratio of the intake, exhaust manifolds, and the exhaust air-to-fuel ratio. The scheduling variable is utilized to estimate static gains of the EGR and VGT systems; it has a large dispersion in various engine operating conditions. Based on the estimated static gains of the plant, the Skogestad internal model control (SIMC) method determines appropriate control gains. The dynamic decoupler is designed to deal with the cross-coupled effects of the EGR and VGT systems by applying a simplified decoupler design method. The simplified decoupler is beneficial for compensating for the dynamics difference between two control loops of the EGR and VGT systems, for example, slow VGT dynamics and fast EGR dynamics. The proposed control algorithm is evaluated through engine experiments. Step test results of set points reveal that root-mean-square (RMS) error of the gain-scheduled feedback controller is reduced by 47% as compared to those of the fixed gain controller. Furthermore, the designed simplified decoupler decreased the tracking error under transients by 14–66% in various engine operating conditions.


Author(s):  
Sungjun Yoon ◽  
Hongsuk Kim ◽  
Daesik Kim ◽  
Sungwook Park

Stringent emission regulations (e.g., Euro-6) have forced automotive manufacturers to equip a diesel particulate filter (DPF) on diesel cars. Generally, postinjection is used as a method to regenerate the DPF. However, it is known that postinjection deteriorates the specific fuel consumption and causes oil dilution for some operating conditions. Thus, an injection strategy for regeneration is one of the key technologies for diesel powertrains equipped with a DPF. This paper presents correlations between the fuel injection strategy and exhaust gas temperature for DPF regeneration. The experimental apparatus consists of a single-cylinder diesel engine, a DC dynamometer, an emission test bench, and an engine control system. In the present study, the postinjection timing was in the range of 40 deg aTDC to 110 deg aTDC and double postinjection was considered. In addition, the effects of the injection pressure were investigated. The engine load was varied among low load to midload conditions, and the amount of fuel of postinjection was increased up to 10 mg/stk. The oil dilution during the fuel injection and combustion processes was estimated by the diesel loss measured by comparing two global equivalences ratios: one measured from a lambda sensor installed at the exhaust port and one estimated from the intake air mass and injected fuel mass. In the present study, the differences of the global equivalence ratios were mainly caused by the oil dilution during postinjection. The experimental results of the present study suggest optimal engine operating conditions including the fuel injection strategy to obtain an appropriate exhaust gas temperature for DPF regeneration. The experimental results of the exhaust gas temperature distributions for various engine operating conditions are discussed. In addition, it was revealed that the amount of oil dilution was reduced by splitting the postinjection (i.e., double postinjection). The effects of the injection pressure on the exhaust gas temperature were dependent on the combustion phasing and injection strategies.


Author(s):  
Rui Fukui ◽  
Yuki Okamoto ◽  
Masayuki Nakao

As a way of reducing the amount of particulate matter (PM) contained in the exhaust gas, diesel particulate filter (DPF) is widely used. To keep the condition of DPF normal and effective, estimation of the amount of PM deposits in the DPF is important. The estimation is mainly conducted based on the value of pressure drop across the DPF. Occasionally, the value of the pressure drop rises suddenly and it leads to overestimation of the amount of PM deposits. In order to elucidate the cause of the sudden pressure drop increase phenomenon, this paper first reveals the engine operating conditions which invoke this phenomenon. The authors also have developed a visualization method to realize the wide-perspective internal observation of the DPF. The observation experiment has been conducted with a commercial engine and DPF under the revealed conditions. Experimental results make clear that the phenomenon is caused by PM deposit layer collapse and channel plugging.


1999 ◽  
Author(s):  
I. Kolmanovsky ◽  
M. van Nieuwstadt ◽  
P. Moraal

Abstract This paper presents results on the optimal transient control of diesel engines with exhaust gas recirculation (EGR) and a variable geometry turbocharger (VGT). The implications of these results for feedback controller design axe discussed.


Author(s):  
Hyunjun Lee ◽  
Joonhee Lee ◽  
Myoungho Sunwoo

In this paper, we propose a sliding mode observer based fault diagnosis algorithm for diesel engines with exhaust gas recirculation (EGR) and variable geometry turbocharger (VGT) systems. The nonlinear sliding mode observer is proposed for precise states estimation of air system in diesel engines. Based on the estimation results of the observer and the limited sensor information in mass-produced engines, a residual generation model is derived. A modified cumulative summation algorithm is applied to the residual generation model for robust fault detection and isolation of the EGR and VGT systems. The proposed observer based fault diagnosis algorithm is implemented on a real-time embedded system, and the bypass function of an engine management system (EMS) is applied to generate multiple types of fault conditions in the systems. As a result of this study, estimation performance of the proposed observer is validated and successful fault diagnosis of the EGR and VGT systems is demonstrated through engine experiments.


Sign in / Sign up

Export Citation Format

Share Document