A Discrete Sliding-Mode Guidance Law

Author(s):  
Di Zhou ◽  
Sheng Sun ◽  
Jing Yang Zhou ◽  
Kok Lay Teo

Based on the discrete form of the target-missile relative motion equations in plane, a discrete sliding-mode guidance (DSMG) law is proposed. All previous missile seeker's measurements are used in the design of the DSMG law to estimate the target acceleration such that noises in the seeker's measurements are effectively being smoothened. It is proved that the proposed DSMG law is finite time convergent. Quasi sliding-mode bands of the DSMG law are discussed, and the formula for calculating the terminal miss distances of the missile under the DSMG law are presented. Simulation results from a space interception process verify the effectiveness of the proposed method.

2016 ◽  
Vol 2016 ◽  
pp. 1-19 ◽  
Author(s):  
Bin Zhao ◽  
Jun Zhou

A smooth guidance law for intercepting a maneuvering target with impact angle constraints is documented based on the nonsingular fast terminal sliding mode control scheme and adaptive control scheme. Different from the traditional adaptive law which is used to estimate the unknown upper bound of the target acceleration, a new adaptive law is proposed to estimate the square of target acceleration bound, which avoids the use of the nonsmooth signum function and therefore ensures the smoothness of the guidance law. The finite time convergence of the guidance system is guaranteed based on the Lyapunov method and the finite time theory. Simulation results indicate that under the proposed guidance law the missile can intercept the target with a better accuracy at a desired impact angle in a shorter time with a completely smooth guidance command compared with the existing adaptive fast terminal sliding mode guidance laws, which shows the superiority of this method.


2022 ◽  
pp. 1-20
Author(s):  
G. Wu ◽  
K. Zhang ◽  
Z. Han

Abstract In order to intercept a highly manoeuvering target with an ideal impact angle in the three-dimensional space, this paper promises to probe into the problem of three-dimensional terminal guidance. With the goal of the highly target acceleration and short terminal guidance time, a guidance law, based on the advanced fast non-singular terminal sliding mode theory, is designed to quickly converge the line-of-sight (LOS) angle and the LOS angular rate within a finite time. In the design process, the target acceleration is regarded as an unknown boundary external disturbance of the guidance system, and the RBF neural network is used to estimate it. In order to improve the estimation accuracy of RBF neural network and accelerate its convergence, the parameters of RBF neural network are adjusted online in real time. At the same time, an adaptive law is designed to compensate the estimation error of the RBF neural network, which improves the convergence speed of the guidance system. Theoretical analysis demonstrates that the state and the sliding manifold of the guidance system converge in finite time. According to Lyapunov theory, the stability of the system can be guaranteed by online adjusting the parameters of RBF neural network and adaptive parameters. The numerical simulation results verify the effectiveness and superiority of the proposed guidance law.


Author(s):  
Chenqi Zhu

In order to improve the guiding accuracy in intercepting the hypersonic vehicle, this article presents a finite-time guidance law based on the observer and head-pursuit theory. First, based on a two-dimensional model between the interceptor and target, this study applies the fast power reaching law to head-pursuit guidance law so that it can alleviate the chattering phenomenon and ensure the convergence speed. Second, target maneuvers are considered as system disturbances, and the head-pursuit guidance law based on an observer is proposed. Furthermore, this method is extended to a three-dimensional case. Finally, comparative simulation results further verify the superiority of the guidance laws designed in this article.


2018 ◽  
Vol 41 (1) ◽  
pp. 182-192 ◽  
Author(s):  
Junhong Song ◽  
Shenmin Song

In this paper, for the three-dimensional terminal guidance problem of a missile intercepting a manoeuvring target, a robust continuous guidance law with impact angle constraints in the presence of both an acceleration saturation constraint and a second-order-lag autopilot is developed. First, based on non-singular fast terminal sliding mode and adaptive control, a step-by-step backstepping method is used to design the guidance law. In the process of guidance law design, with the use of a finite-time control technique, virtual control laws are developed, a tracking differentiator is used to eliminate the ‘explosion of complexity’ problem inherent in the traditional backstepping method, and an additional system is constructed to deal with the acceleration saturation problem; its states are used for guidance law design and stability analysis. Moreover, the target acceleration is considered bounded disturbance, but the upper bound is not required to be known in advance, whereas the upper bound is estimated online by a designed adaptive law. Next, finite-time stability of the guidance system is strictly proved by using a Lyapunov method. Finally, numerical simulations are presented to demonstrate the excellent guidance performances of the proposed guidance law in terms of accuracy and efficiency.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Feng Chen ◽  
Guangjun He ◽  
Qifang He

To effectively intercept a low-altitude target in clutter background, a nonsingular fast terminal sliding mode guidance law is designed. The designed guidance law can fully exploit the fast convergence characteristics of linear sliding mode control and the finite-time-convergent characteristics of terminal sliding mode control to ensure that the line-of-sight (LOS) angle converges to a desired angle in a limited time at a faster rate. Utilizing the smooth switching characteristics of the hyperbolic tangent function similar to the saturation function, a finite-time-convergent differentiator is designed. Meanwhile, a new finite-time-convergent disturbance observer designed on the tracking differentiator can effectively track the ideal LOS angular rate, suppress the measurement noise, and make a smooth estimation of the target maneuvering acceleration in clutter background. Combining the estimated value of the disturbance observer, the sign function with switch coefficient is introduced to design a composite nonsingular fast terminal sliding mode guidance law. The simulation results show that the composite guidance law can not only effectively suppress the measurement noise of the LOS angular rate and improve the accuracy of low-altitude target intercepting, but also greatly reduce the energy consumption in the interception process.


Author(s):  
Shuai Xu ◽  
Min Gao ◽  
Dan Fang ◽  
Yi Wang ◽  
Baochen Li

Aiming at the problem of missile attacking ground target in pitch plane, combined with a composite fast nonsingular terminal sliding mode, a new adaptive finite-time stable guidance law with attack angle constraint is designed based on the second-order sliding mode control. The improved extended state observer is used to estimate the uncertainties and compensate the control quantity, and the dynamic control gains are designed to avoid the problem about “excessive estimation” of the parameter upper limit. According to the Lyapunov stability theory, it is proved that the system states can converge into a small neighborhood near the equilibrium point in a finite time. Monte Carlo simulation is carried out by randomly generating initial conditions, which proves that the guidance law has strong adaptability to different initial conditions and has good guidance precision.


Author(s):  
Sheng Sun ◽  
Di Zhou ◽  
Jingyang Zhou ◽  
Kok Lay Teo

The true proportional navigation guidance law, the augmented proportional navigation guidance law, or the adaptive sliding-mode guidance law, is designed based on the planar target-to-missile relative motion dynamics. By a proper construction of a nonlinear Lyapunov function for the line-of-sight angular rates in the three-dimensional guidance dynamics, it is shown that the three guidance laws mentioned above are able to ensure the asymptotic convergence of the angular rates as they are directly applied to the three-dimensional guidance environment. Furthermore, considering the missile autopilot dynamics as a first-order lag, we design three-dimensional nonlinear guidance laws by using the backstepping technique for three cases: (1) the target does not maneuver; (2) the information of target acceleration can be acquired; and (3) the target acceleration is not available but its bound is known a priori. In the first step of the backstepping design of the control law, there is no need to cancel the nonlinear coupling terms in the three-dimensional guidance dynamics in such way that the final expressions of the proposed guidance laws are significantly simplified. Thus, the proposed nonlinear Lyapunov function for the line-of-sight angular rates is a generalized function for designing three-dimensional guidance laws. Simulation results of a missile interception mission show that the proposed guidance laws are highly effective.


Sign in / Sign up

Export Citation Format

Share Document