A Multidisciplinary Approach for the Comprehensive Assessment of Integrated Rotorcraft–Powerplant Systems at Mission Level

Author(s):  
Ioannis Goulos ◽  
Fakhre Ali ◽  
Konstantinos Tzanidakis ◽  
Vassilios Pachidis ◽  
Roberto d'Ippolito

This paper presents an integrated methodology for the comprehensive assessment of combined rotorcraft–powerplant systems at mission level. Analytical evaluation of existing and conceptual designs is carried out in terms of operational performance and environmental impact. The proposed approach comprises a wide-range of individual modeling theories applicable to rotorcraft flight dynamics and gas turbine engine performance. A novel, physics-based, stirred reactor model is employed for the rapid estimation of nitrogen oxides (NOx) emissions. The individual mathematical models are implemented within an elaborate numerical procedure, solving for total mission fuel consumption and associated pollutant emissions. The combined approach is applied to the comprehensive analysis of a reference twin-engine light (TEL) aircraft modeled after the Eurocopter Bo 105 helicopter, operating on representative mission scenarios. Extensive comparisons with flight test data are carried out and presented in terms of main rotor trim control angles and power requirements, along with general flight performance charts including payload-range diagrams. Predictions of total mission fuel consumption and NOx emissions are compared with estimated values provided by the Swiss Federal Office of Civil Aviation (FOCA). Good agreement is exhibited between predictions made with the physics-based stirred reactor model and experimentally measured values of NOx emission indices. The obtained results suggest that the production rates of NOx pollutant emissions are predominantly influenced by the behavior of total air inlet pressure upstream of the combustion chamber, which is affected by the employed operational procedures and the time-dependent all-up mass (AUM) of the aircraft. It is demonstrated that accurate estimation of on-board fuel supplies ahead of flight is key to improving fuel economy as well as reducing environmental impact. The proposed methodology essentially constitutes an enabling technology for the comprehensive assessment of existing and conceptual rotorcraft–powerplant systems, in terms of operational performance and environmental impact.

Author(s):  
Fakhre Ali ◽  
Ioannis Goulos ◽  
Konstantinos Tzanidakis ◽  
Vassilios Pachidis ◽  
Roberto d’Ippolito

This paper presents an integrated methodology for the comprehensive assessment of combined rotorcraft–powerplant systems at mission level. Analytical evaluation of existing and conceptual designs is carried out in terms of operational performance and environmental impact. The proposed approach comprises a wide-range of individual modeling theories applicable to rotorcraft flight dynamics and gas turbine engine performance. A novel, physics-based, stirred reactor model is employed for the rapid estimation of nitrogen oxides (NOx) emissions. The individual mathematical models are implemented within an elaborate numerical procedure, solving for total mission fuel consumption and associated pollutant emissions. The combined approach is applied to the comprehensive analysis of a reference twin-engine light aircraft modeled after the Eurocopter Bo 105 helicopter, operating on representative mission scenarios. Extensive comparisons with flight test data are carried out and presented in terms of main rotor trim control angles and power requirements, along with general flight performance charts including payload-range diagrams. Predictions of total mission fuel consumption and NOx emissions are compared with estimated values provided by the Swiss Federal Office of Civil Aviation. Good agreement is exhibited between predictions made with the physics-based stirred reactor model and experimentally measured values of NOx emission indices. The obtained results suggest that, the production rates of NOx pollutant emissions are predominantly influenced by the behavior of total air inlet pressure upstream of the combustion chamber, which is affected by the employed operational procedures and the time-dependent all-up mass of the aircraft. It is demonstrated that, accurate estimation of on-board fuel supplies ahead of flight is key to improving fuel economy as well as reducing environmental impact. The proposed methodology essentially constitutes an enabling technology for the comprehensive assessment of existing and conceptual rotorcraft–powerplant systems, in terms of operational performance and environmental impact.


2015 ◽  
Vol 119 (1211) ◽  
pp. 67-90 ◽  
Author(s):  
F. Ali ◽  
I. Goulos ◽  
V. Pachidis

AbstractThis paper aims to present an integrated multidisciplinary simulation framework, deployed for the comprehensive assessment of combined helicopter–powerplant systems at mission level. Analytical evaluations of existing and conceptual regenerative engine designs are carried out in terms of operational performance and environmental impact. The proposed methodology comprises a wide-range of individual modeling theories applicable to helicopter flight dynamics, gas turbine engine performance as well as a novel, physics-based, stirred reactor model for the rapid estimation of various helicopter emissions species. The overall methodology has been deployed to conduct a preliminary trade-off study for a reference simple cycle and conceptual regenerative twin-engine light helicopter, modeled after the Airbus Helicopters Bo105 configuration, simulated under the representative mission scenarios. Extensive comparisons are carried out and presented for the aforementioned helicopters at both engine and mission level, along with general flight performance charts including the payload-range diagram. The acquired results from the design trade-off study suggest that the conceptual regenerative helicopter can offer significant improvement in the payload-range capability, while simultaneously maintaining the required airworthiness requirements. Furthermore, it has been quantified through the implementation of a representative case study that, while the regenerative configuration can enhance the mission range and payload capabilities of the helicopter, it may have a detrimental effect on the mission emissions inventory, specifically for NOx(Nitrogen Oxides). This may impose a trade-off between the fuel economy and environmental performance of the helicopter. The proposed methodology can effectively be regarded as an enabling technology for the comprehensive assessment of conventional and conceptual helicopter-powerplant systems, in terms of operational performance and environmental impact as well as towards the quantification of their associated trade-offs at mission level.


Author(s):  
Jesus Ortiz-Carretero ◽  
Alejandro Castillo Pardo ◽  
Ioannis Goulos ◽  
Vassilios Pachidis

It is anticipated that the contribution of rotorcraft activities to the environmental impact of civil aviation will increase in the future. Due to their versatility and robustness, helicopters are often operated in harsh environments with extreme ambient conditions. These severe conditions not only affect the performance of the engine but also affect the aerodynamics of the rotorcraft. This impact is reflected in the fuel burn and pollutants emitted by the rotorcraft during a mission. The aim of this paper is to introduce an exhaustive methodology to quantify the influence adverse environment conditions have in the mission fuel consumption and the associated emissions of nitrogen oxides (NOx). An emergency medical service (EMS) and a search and rescue (SAR) mission are used as case studies to simulate the effects of extreme temperatures, high altitude, and compressor degradation on a representative twin-engine medium (TEM) weight helicopter, the Sikorsky UH-60A Black Hawk. A simulation tool for helicopter mission performance analysis developed and validated at Cranfield University was employed. This software comprises different modules that enable the analysis of helicopter flight dynamics, powerplant performance, and exhaust emissions over a user-defined flight path profile. For the validation of the models implemented, extensive comparisons with experimental data are presented throughout for rotorcraft and engine performance as well as NOx emissions. Reductions as high as 12% and 40% in mission fuel and NOx emissions, respectively, were observed for the “high and cold” scenario simulated at the SAR role relative to the same mission trajectory under standard conditions.


2021 ◽  
Vol 13 (2) ◽  
pp. 465
Author(s):  
Mengyuan Sun ◽  
Yong Tian ◽  
Yao Zhang ◽  
Muhammad Nadeem ◽  
Can Xu

Under the background of economic globalization, the air transport industry developed rapidly. It turns out that the city-to-city network has not been able to adapt well to the development of the society, and the hub-and-spoke network came into being. The hub-and-spoke network demonstrates the advantages of reducing the operating costs of airlines to keep a competitive advantage, and by maintaining the interests of airlines in the rapidly developing context. However, during the operation of aircrafts, they consume fuel and spew a great deal of harmful pollutants into the air, which has an adverse impact on the living environment. This paper explores the impact and external costs associated with hub-and-spoke network in air transport from an environmental perspective. With some mathematical models, we construct a hub-and-spoke network and take a quantitative study on the environmental impact of air transport. For calculating pollutant emissions, meteorological conditions were considered to revise the pollutant emission factors of the Engine Emissions Data Base (EEDB) published by International Civil Aviation Organization (ICAO). The environmental external costs measurement model is employed to calculate the externality of toxic gas and greenhouse gas (GHG). In order to make the study more convincing, two alternative networks are computed: hub-and-spoke network and city-to-city network. It is found that the hub-and-spoke network is associated with poorer environmental impact and environmental external costs because of the different network characteristics and the scale of the fleets. Therefore, under the general trend of green aviation, the environmental impact and environmental external costs associated with hub-and-spoke network in air transport provides a certain reference for airlines’ strategic decision-making.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7559
Author(s):  
Lisha Li ◽  
Shuming Yuan ◽  
Yue Teng ◽  
Jing Shao

Though the development of China’s civil aviation and the improvement of control ability have strengthened the safety operation and support ability effectively, the airlines are under the pressure of operation costs due to the increase of aircraft fuel price. With the development of optimization controlling methods in flight management systems, it becomes increasingly challenging to cut down flight fuel consumption by control the flight status of the aircraft. Therefore, the airlines both at home and abroad mainly rely on the accurate estimation of aircraft fuel to reduce fuel consumption, and further reduce its carbon emission. The airlines have to take various potential factors into consideration and load more fuel to cope with possible negative situation during the flight. Therefore, the fuel for emergency use is called PBCF (Performance-Based Contingency Fuel). The existing PBCF forecasting method used by China Airlines is not accurate, which fails to take into account various influencing factors. This paper aims to find a method that could predict PBCF more accurately than the existing methods for China Airlines.This paper takes China Eastern Airlines as an example. The experimental data of flight fuel of China Eastern Airlines Co, Ltd. were collected to find out the relevant parameters affecting the fuel consumption, which is followed by the establishment of the LSTM neural network through the parameters and collected data. Finally, through the established neural network model, the PBCF addition required by the airline with different influencing factors is output. It can be seen from the results that the all the four models are available for the accurate prediction of fuel consumption. The amount of data of A319 is much larger than that of A320 and A330, which leads to higher accuracy of the model trained by A319. The study contributes to the calculation methods in the fuel-saving project, and helps the practitioners to learn about a particular fuel calculation method. The study brought insights for practitioners to achieve the goal of low carbon emission and further contributed to their progress towards circular economy.


Author(s):  
Horst W. Koehler

Currently available global inventories of nitrogen oxides (NOx) and other pollutant emissions from merchant ships are based, at least partly, on data published by international marine bunker fuel suppliers. However, the uncertainty of such data seems to be quite high, because the figures released by bunker fuel companies might be incomplete or based, for example, on data collected from only the largest ports. Besides, all similar other studies conducted so far were based on simplified average emission and fuel consumption characteristics of diesel engines and did not take into account variations with engine type, size, engine load and engine speed, as well as only being valid for new state-of-the-art diesel engines as supplied by the industry today. Furthermore, fuel consumption rates of the auxiliary engine equipment onboard vessels were neglected. The author therefore adopted a different approach by calculating the actual bunker amount and the fleet’s 2001 NOx emissions in order to reduce uncertainty in existing inventories and to assist in achieving a better modeling of the effects of ships’ pollutants on atmospheric chemistry. For this study, all ships of 100 gross tonnage (gt) and above were taken into account. This methodology resulted in a significantly higher world fleet fuel consumption, and, consequently, much higher oceangoing ships’ NOx emissions than known or anticipated so far. In spite of the fleet’s high NOx emission rate in absolute figures this paper shows, that when emissions are based on the annual seaborne trade, merchant shipping is an environmentally efficient mode of transportation of freight.


2021 ◽  
Vol 268 ◽  
pp. 01030
Author(s):  
Zhicheng Ma ◽  
Tieqiang Fu ◽  
Yuwei Wang ◽  
Wei Zhao ◽  
Luowei Zhang

The idling distribution characteristics of NEDC, WLTC and CLTC conditions were analyzed, and the exhaust emissions and fuel consumption of three light gasoline vehicles when the idling start-stop function was turned on and off under different cycle conditions were measured. The effects of idling start-stop function on light vehicle fuel consumption and emissions under different cycle conditions were analyzed. The results show that the vehicle fuel saving rate of the idling start-stop function in three cycle conditions is WLTC, NEDC and CLTC conditions from low to high. The idling start-stop function has little effect on vehicle gaseous pollutant emissions. On the whole, the the activation of idling start-stop function increases the THC and CO emissions and reduces NOx emissions.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Fangzi Liu ◽  
Minghua Hu ◽  
Wenying Lv ◽  
Honghai Zhang

Trajectory-based operation is a new technology that will be developed in the next generation of air traffic management. In order to clarify the optimization space of fuel consumption and emission impact on the environment under the specific operation limitation of air traffic management in the process of aircraft climb, an aircraft climb performance parameter optimization model considering the environmental impact is established. First, the horizontal and vertical climb models are established for the aircraft climb process, and then the optimization objectives are constructed by considering the impact of fuel consumption, exhaust emissions on air temperature, and the convenience of the flight process. Finally, the multiobjective model is solved by genetic algorithm. The B737-800 civil aviation aircraft is selected for simulation experiment to analyze the impact of speed change on the optimization target. The results show that with the change of speed, the fuel consumption and temperature rise are different, and the climb performance parameters of the aircraft are affected by the maximum RTA. By optimizing the flight parameters of the aircraft, it can effectively reduce the impact of flight on the environment and provide theoretical support for the sustainable development of civil aviation.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Pan Wei-Jun ◽  
Zhang Heng-Heng ◽  
Zhang Xiao-Lei ◽  
Wu Tian-Yi

During the final approach, the headwind leads to a reduction of landing rate, which affects the achieved capacity and the predictability of operation, time, fuel efficiency, and environmental pollution. Under headwind conditions, ground speed decrease results in increased flight time. Time-based separation (TBS) changes the separation rule of the final approach, which changes the distance separation between two aircrafts into a time separation. This paper introduces the time-based separation (TBS) based on the distance-based separation (DBS). According to the aircraft landing schedule of each airport, the ICAO (International Civil Aviation Organization) aircraft engine emission database, Boeing Fuel Flow Method 2 (BFFM2), and meteorological data of Pu-dong airport, this study uses the modified P3-T3 aviation pollutant emission model to calculate, respectively, the fuel consumption and pollutant emissions based on distance separation mode and time separation mode. According to the calculation results, TBS operation mode can save 32.52%, 19.12%, and 30.41% fuel, reduce 28.93%, 17.9%, and 29.29% CO, 31.02%, 19.36%, and 33.78% HC, 30.85%, 16.42%, and 28.67% NOx, respectively, compared with the DBS operation mode at three stages of the day. It ends that TBS has an obvious optimization effect on fuel consumption and pollutant emission compared with DBS from data.


Author(s):  
D. Kroniger ◽  
M. Lipperheide ◽  
M. Wirsum

Addition of hydrogen (H2) to gas turbine fuel has recently become a topic of interest facing the global challenges of CO2 free combustion. As a drawback, Nitrogen oxide (NOx) emissions are likely to increase in hydrogen-rich fuel combustion which in return limits the use of the technology. In the course of this development, a model-based quantification of NOx emission increase by fuel flexibility may identify possible operation ranges of this technology. This paper evaluates the effect of an increased hydrogen fraction in the fuel on the NOx emissions of a non-premixed 10 MWth gas turbine combustor. A simple reactor network model has been set up using a perfectly stirred reactor (PSR) to simulate the flame zone and a plug flow reactor (PFR) to simulate the post flame zone. The change of residence time in the flame zone is accounted for by an empirical expression. The model is validated against data from high-pressure test rig experiments of an industrial non-premixed gas turbine combustor. The model results are in good agreement with the experimental data. Based on the model results, a fundamental correlation of the effect of hydrogen on the NOx emissions is formulated.


Sign in / Sign up

Export Citation Format

Share Document