Experimental Investigation of Purge Flow Effects on a High Pressure Turbine Stage

2014 ◽  
Vol 137 (4) ◽  
Author(s):  
K. Regina ◽  
A. I. Kalfas ◽  
R. S. Abhari

In the present paper, an experimental investigation of the effects of rim seal purge flow on the performance of a highly loaded axial turbine stage is presented. The test configuration consists of a one-and-a-half stage, unshrouded, turbine, with a blading representative of high pressure (HP) gas turbines. Efficiency measurements for various purge flow injection levels have been carried out with pneumatic probes at the exit of the rotor and show a reduction of isentropic total-to-total efficiency of 0.8% per percent of injected mass flow. For three purge flow conditions, the unsteady aerodynamic flow field at rotor inlet and rotor exit has been measured with the in-house developed fast response aerodynamic probe (FRAP). The time-resolved data show the unsteady interaction of the purge flow with the secondary flows of the main flow and the impact on the radial displacement of the rotor hub passage vortex (HPV). Steady measurements at off-design conditions show the impact of the rotor incidence and of the stage flow factor on the resulting stage efficiency and the radial displacement of the rotor HPV. A comparison of the effect of purge flow and of the off-design conditions on the rotor incidence and stage flow factor shows that the detrimental effect of the purge flow on the stage efficiency caused by the radial displacement of the rotor HPV is dominated by the increase of stage flow factor in the hub region rather than by the increase of negative rotor incidence.

Author(s):  
K. Regina ◽  
A. I. Kalfas ◽  
R. S. Abhari

In the present paper an experimental investigation of the effects of hub purge flow on the performance of a high pressure axial turbine stage is presented. The test configuration consists of a one-and-a-half stage, unshrouded, highly loaded axial turbine, with a blading representative of high pressure gas turbines. The test configuration has the capability of integrating purge flow from the cavity under the rotor/stator platform. Efficiency measurements for various purge flow injection levels have been carried out with pneumatic probes at the exit of the rotor and show a reduction of isentropic total-to-total efficiency of 0.8 % per percent of injected mass flow. For three purge flow conditions the unsteady aerodynamic flow field at rotor inlet and rotor exit has been measured with the in-house developed Fast Response Aerodynamic Probe (FRAP): one condition is with sucking at a mass flow fraction of −0.1 % and two conditions are with injection at a mass flow fraction of 0.8 % and 1.2 %. The time-resolved data shows the unsteady interaction of the purge flow with the secondary flows of the main flow and the impact on the radial displacement of the rotor hub passage vortex. Steady measurements at off-design conditions show the impact of the rotor incidence and of the stage flow factor on the resulting stage efficiency and the radial displacement of the rotor HPV. A comparison of the effect of purge flow and of the off-design conditions on the rotor incidence and stage flow factor shows that the detrimental effect of the purge flow on the stage efficiency caused by the radial displacement of the rotor hub passage vortex is dominated by the increase of stage flow factor in the hub region rather than by the increase of negative rotor incidence.


2017 ◽  
Vol 1 ◽  
pp. 68MK5V ◽  
Author(s):  
Rainer Schädler ◽  
Anestis I. Kalfas ◽  
Reza S. Abhari ◽  
Gregor Schmid ◽  
Tilmann auf dem Kampe ◽  
...  

AbstractRim seals throttle flow and have shown to impact the aerodynamic performance of gas turbines. The results of an experimental investigation of a rim seal exit geometry variation and its impact on the high-pressure turbine flow field are presented. A one-and-a-half stage, unshrouded and highly loaded axial turbine configuration with 3-dimensionally shaped blades and non-axisymmetric end wall contouring has been tested in an axial turbine facility. The exit of the rotor upstream rim seal was equipped with novel geometrical features which are termed as purge control features (PCFs) and a baseline rim seal geometry for comparison. The time-averaged and unsteady aerodynamic effects at rotor inlet and exit have been measured with pneumatic probes and the fast-response aerodynamic probe (FRAP) for three rim seal purge flow injection rates. Measurements at rotor inlet and exit reveal the impact of the geometrical features on the rim seal exit and main annulus flow field, highlighting regions of reduced aerodynamic losses induced by the modified rim seal design. Measurements at the rotor exit with the PCFs installed show a benefit in the total-to-total stage efficiency up to 0.4% for nominal and high rim seal purge flow rates. The work shows the potential to improve the aerodynamic efficiency by means of a well-designed rim seal exit geometry without losing the potential to block hot gas ingestion from the main annulus.


Author(s):  
K. Regina ◽  
A. I. Kalfas ◽  
R. S. Abhari ◽  
A. Lohaus ◽  
S. Voelker ◽  
...  

In the present study, the results of an experimental investigation are presented, which have been undertaken in the axial turbine facility LISA at ETH Zurich. The two test configurations consist of a one-and-a-half stage, unshrouded, highly loaded axial turbine with 3-dimensionally shaped blading representative of modern high pressure gas turbines. The two test configurations differ in the hub end walls: while one design has cylindrical end walls, the other design features non-axisymmetric end wall contouring (EWC). Both turbine designs have not been especially designed for the unsteady and complex interaction mechanisms of the hub rim seal purge flow with the main annulus flow. However, these turbine designs have been subject to measurements without (nominal) and with purge flow (0.8% of the main mass flow) with the purpose of studying the aerodynamic robustness of the performance of the stages with respect to the rim seal purge flow. In order to further analyze the robustness of both turbine designs, also measurements at off-design conditions have been taken. The steady and unsteady aerodynamic effects are measured, respectively, with pneumatic probes as well as with the in-house developed and manufactured Fast Response Aerodynamic Probe (FRAP) technology. With the aim of evaluating the aerodynamic performance and robustness of the end wall design, the one result of the experimental investigation is the quantification of the sensitivity of the stage efficiency with respect to the case with and without purge flow for both turbine designs. By means of the analysis of the time-resolved flow field and characterization of the secondary flow features, their reaction to the presence of purge flow is highlighted and used as an explanation for the efficiency deficits caused by the purge flow. The measurements show a benefit in stage efficiency of +0.2% by using the end wall contouring in the nominal case, confirming the design intention and effectiveness of the contoured end walls. However, the beneficial impact of the end wall contouring is taken back by a higher sensitivity of the stage efficiency with respect to the purge flow, which causes the efficiency benefit to vanish with the investigated purge flow injection rate of 0.8%. The off-design measurements show that also the sensitivity of the stage with end wall contouring with respect to the reduction of stage loading factor is by 1/3 higher than the one of the cylindrical end walls. The measurements imply that the cost of higher stage efficiency at nominal conditions by the use of end wall contouring is paid with a higher sensitivity of the stage to changes in the rotor incoming flow field and thus with a lower aerodynamic robustness of the turbine design.


Author(s):  
Jeremy Nickol ◽  
Matthew Tomko ◽  
Randall Mathison ◽  
Jong S. Liu ◽  
Mark Morris ◽  
...  

An experiment is performed using a cooled transonic high-pressure turbine stage operating at design-corrected conditions. Pressure measurements are taken at several locations within the forward purge cavity between the high-pressure stator and rotor, as well as on the blade platforms and vane inner endwalls. Double-sided Kapton heat-flux gauges are installed on the upper surface of the rotor blade platform (open to the hot gas path flow) and underneath the platform (exposed to coolant and leakage flow). The blade airfoil and purge flow cooling are supplied by the same flow circuit and must be varied together, but the influence of the airfoil cooling has previously been shown to be negligible in the platform region flow of interest to this study. A separate cooling circuit supplies the aft purge flow between the rotor and downstream components. The vane cooling holes have been blocked off for this experiment to simplify analysis. In order to determine the effect of the purge flow on the blade aerodynamics and heat transfer, the forward and aft cooling flow rates are varied independently. Both time-averaged and time-accurate results are presented for the pressure and heat-flux data to illustrate the complex interactions between the purge cavity flow structures and the external flow. Time-accurate data are presented using both Fast-Fourier Transforms (FFTs) to identify driving frequencies and ensemble average plots to highlight the impact of different wake shapes.


Author(s):  
S. Zerobin ◽  
C. Aldrian ◽  
A. Peters ◽  
F. Heitmeir ◽  
E. Göttlich

This paper presents an experimental study of the impact of individual high-pressure turbine purge flows on the main flow in a downstream turbine center frame duct. Measurements were carried out in a product-representative one and a half stage turbine test setup, installed in the Transonic Test Turbine Facility at Graz University of Technology. The rig allows testing at engine-relevant flow conditions, matching Mach, Reynolds, and Strouhal number at the inlet of the turbine center frame. The reference case features four purge flows differing in flow rate, pressure, and temperature, injected through the hub and tip, forward and aft cavities of the high-pressure turbine rotor. To investigate the impact of each individual cooling flow on the flow evolution in the turbine center frame, the different purge flows were switched off one-by-one while holding the other three purge flow conditions. In total, this approach led to six different test conditions when including the reference case and the case without any purge flow ejection. Detailed measurements were carried out at the turbine center frame duct inlet and outlet for all six conditions and the post-processed results show that switching off one of the rotor case purge flows leads to an improved duct performance. In contrast, the duct exit flow is dominated by high pressure loss regions if the forward rotor hub purge flow is turned off. Without the aft rotor hub purge flow, a reduction in duct pressure loss is determined. The purge flows from the rotor aft cavities are demonstrated to play a particularly important role for the turbine center frame aerodynamic performance. In summary, this paper provides a first-time assessment of the impact of four different purge flows on the flow field and loss generation mechanisms in a state-of-the-art turbine center frame configuration. The outcomes of this work indicate that a high-pressure turbine purge flow reduction generally benefits turbine center frame performance. However, the forward rotor hub purge flow actually stabilizes the flow in the turbine center frame duct and reducing this purge flow can penalize turbine center frame performance. These particular high-pressure turbine/turbine center frame interactions should be taken into account whenever high-pressure turbine purge flow reductions are pursued.


2021 ◽  
Vol 143 (4) ◽  
Author(s):  
A. J. Carvalho Figueiredo ◽  
B. D. J. Schreiner ◽  
A. W. Mesny ◽  
O. J. Pountney ◽  
J. A. Scobie ◽  
...  

Abstract Air-cooled gas turbines employ bleed air from the compressor to cool vulnerable components in the turbine. The cooling flow, commonly known as purge air, is introduced at low radius, before exiting through the rim-seal at the periphery of the turbine discs. The purge flow interacts with the mainstream gas path, creating an unsteady and complex flowfield. Of particular interest to the designer is the effect of purge on the secondary-flow structures within the blade passage, the extent of which directly affects the aerodynamic loss in the stage. This paper presents a combined experimental and computational fluid dynamics (CFD) investigation into the effect of purge flow on the secondary flows in the blade passage of an optically accessible one-stage turbine rig. The experimental campaign was conducted using volumetric velocimetry (VV) measurements to assess the three-dimensional inter-blade velocity field; the complementary CFD campaign was carried out using unsteady Reynolds-averaged Navier–Stokes (URANS) computations. The implementation of VV within a rotating environment is a world first and offers an unparalleled level of experimental detail. The baseline flow-field, in the absence of purge flow, demonstrated a classical secondary flow-field: the rollup of a horseshoe vortex, with subsequent downstream convection of a pressure-side and suction-side leg, the former transitioning in to the passage vortex. The introduction of purge, at 1.7% of the mainstream flowrate, was shown to modify the secondary flow-field by enhancing the passage vortex, in both strength and span-wise migration. The computational predictions were in agreement with the enhancement revealed by the experiments.


Author(s):  
Dimitrios Papadogiannis ◽  
Florent Duchaine ◽  
Laurent Gicquel ◽  
Gaofeng Wang ◽  
Stéphane Moreau ◽  
...  

Indirect combustion noise, generated by the acceleration and distortion of entropy waves through the turbine stages, has been shown to be the dominant noise source of gas turbines at low-frequencies and to impact the thermoacoustic behavior of the combustor. In the present work, indirect combustion noise generation is evaluated in the realistic, fully 3D transonic high-pressure turbine stage MT1 using Large-Eddy Simulations (LES). An analysis of the basic flow and the different turbine noise generation mechanisms is performed for two configurations: one with a steady inflow and a second with a pulsed inlet, where a plane entropy wave train at a given frequency is injected before propagating across the stage generating indirect noise. The noise is evaluated through the Dynamic Mode Decomposition of the flow field. It is compared with previous 2D simulations of a similar stator/rotor configuration, as well as with the compact theory of Cumpsty and Marble. Results show that the upstream propagating entropy noise is reduced due to the choked turbine nozzle guide vane. Downstream acoustic waves are found to be of similar strength to the 2D case, highlighting the potential impact of indirect combustion noise on the overall noise signature of the engine.


2006 ◽  
Vol 129 (3) ◽  
pp. 580-590 ◽  
Author(s):  
P. Gaetani ◽  
G. Persico ◽  
V. Dossena ◽  
C. Osnaghi

An extensive experimental analysis was carried out at Politecnico di Milano on the subject of unsteady flow in high pressure (HP) turbine stages. In this paper, the unsteady flow measured downstream of a modern HP turbine stage is discussed. Traverses in two planes downstream of the rotor are considered, and, in one of them, the effects of two very different axial gaps are investigated: the maximum axial gap, equal to one stator axial chord, is chosen to “switch off” the rotor inlet unsteadiness, while the nominal gap, equal to 1/3 of the stator axial chord, is representative of actual engines. The experiments were performed by means of a fast-response pressure probe, allowing for two-dimensional phase-resolved flow measurements in a bandwidth of 80kHz. The main properties of the probe and the data processing are described. The core of the paper is the analysis of the unsteady rotor aerodynamics; for this purpose, instantaneous snapshots of the rotor flow in the relative frame are used. The rotor mean flow and its interaction with the stator wakes and vortices are also described. In the outer part of the channel, only the rotor cascade effects can be observed, with a dominant role played by the tip leakage flow and by the rotor tip passage vortex. In the hub region, where the secondary flows downstream of the stator are stronger, the persistence of stator vortices is slightly visible in the maximum stator-rotor axial gap configuration, whereas in the minimum stator-rotor axial gap configuration their interaction with the rotor vortices dominates the flow field. A good agreement with the wakes and vortices transport models has been achieved. A discussion of the interaction process is reported giving particular emphasis to the effects of the different cascade axial gaps. Some final considerations on the effects of the different axial gap over the stage performances are reported.


Author(s):  
Carl M. Sangan ◽  
James A. Scobie ◽  
J. Michael Owen ◽  
Gary D. Lock ◽  
Kok Mun Tham ◽  
...  

In gas turbines, rim seals are fitted at the periphery of the wheel-space between the turbine disc and its adjacent casing; their purpose is to reduce the ingress of hot mainstream gases. A superposed sealant flow, bled from the compressor, is used to purge the wheel-space or at least dilute the ingress to an acceptable level. The ingress is caused by the circumferential variation of pressure in the turbine annulus radially outward of the seal. Engine designers often use double rim seals where the variation in pressure is attenuated in the outer wheel-space between the two seals. This paper describes experimental results from a research facility which models an axial turbine stage with engine-representative rim seals. The radial variation of CO2 gas concentration, swirl and pressure, in both the inner and outer wheel-space, are presented over a range of purge flow rates. The data are used to assess the performance of two seals: a datum double-rim seal and a derivative with a series of radial fins. The concept behind the finned seal is that the radial fins increase the swirl in the outer wheel-space; measurements of swirl show the captive fluid between the fins rotate with near solid body rotation. The improved attenuation of the pressure asymmetry, which governs the ingress, results in an improved performance of the inner geometry of the seal. The fins also increased the pressure in the outer wheel-space and reduced the ingress though the outer geometry of the seal.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Nicola Casari ◽  
Michele Pinelli ◽  
Alessio Suman ◽  
Luca di Mare ◽  
Francesco Montomoli

Fouling is a major problem in gas turbines for aeropropulsion because the formation of aggregates on the wet surfaces of the machine affects aerodynamic and heat loads. The representation of fouling in computational fluid dynamics (CFD) is based on the evaluation of the sticking probability, i.e., the probability a particle touching a solid surface has to stick to that surface. Two main models are currently available in literature for the evaluation of the sticking coefficient: one is based on a critical threshold for the viscosity, and the other is based on the normal velocity to the surface. However, both models are application specific and lack generality. This work presents an innovative model for the estimation of the sticking probability. This quantity is evaluated by comparing the kinetic energy of the particle with an activation energy which describes the state of the particle. The sticking criterion takes the form of an Arrhenius-type equation. A general formulation for the sticking coefficient is obtained. The method, named energy-based fouling (EBFOG), is the first “energy”-based model presented in the open literature able to account any common deposition effect in gas turbines. The EBFOG model is implemented into a Lagrangian tracking procedure, coupled to a fully three-dimensional CFD solver. Particles are tracked inside the domain, and equations for the momentum and temperature of each particle are solved. The local geometry of the blade is modified accordingly to the deposition rate. The mesh is modified, and the CFD solver updates the flow field. The application of this model to particle deposition in high-pressure turbine vanes is investigated, showing the flexibility of the proposed methodology. The model is particularly important in aircraft engines where the effect of fouling for the turbine, in particular the reduction of the high pressure (HP) nozzle throat area, influences heavily the performance by reducing the core capacity. The energy-based approach is used to quantify the throat area reduction rate and estimate the variation in the compressor operating condition. The compressor operating point as a function of the time spent operating in a harsh environment can be in this way predicted to estimate, for example, the time that an engine can fly in a cloud of volcanic ashes. The impact of fouling on the throat area of the nozzle is quantified for different conditions.


Sign in / Sign up

Export Citation Format

Share Document