A Two-Dimensional Multibody Integral Approach for Forces in Inviscid Flow With Free Vortices and Vortex Production

2014 ◽  
Vol 137 (2) ◽  
Author(s):  
Juan Li ◽  
Chen-Yuan Bai ◽  
Zi-Niu Wu

In this paper, we propose an integral force approach for potential flow around two-dimensional bodies with external free vortices and with vortex production. The method can be considered as an extension of the generalized Lagally theorem to the case with continuous distributed vortices inside and outside of the body and is capable of giving the individual force of each body in the case of multiple bodies. The lift force formulas are validated against two examples. One is the Wagner problem with vortex production and with moving vortices in the form of a vortex sheet. The other is the lift of a flat plate when there is a standing vortex over its middle point. As a first application, the integral approach is applied to study the lift force of a flat plate induced by a bounded vortex above the plate. This bounded vortex may represent a second small airfoil at incidence. For this illustrative example, the lift force is found to display an interesting distance-dependent behavior: for a clockwise circulation, the lift force acting on the main airfoil is attractive for small distance and repulsive for large distance.

1984 ◽  
Vol 143 ◽  
pp. 351-365 ◽  
Author(s):  
P. G. Saffman ◽  
S. Tanveer

Two-dimensional steady inviscid flow past an inclined flat plate with a forward-facing flap attached to the rear edge is considered for the case when a vortex sheet separates from the leading edge of the flat plate and reattaches at the leading edge of the flap, with uniform vorticity distributed between the vortex sheet and the body. Solutions are found for a particular geometry and a range of values of the vorticity. The method used to calculate the flow is an extension of a free-streamline method widely used in cases where the velocity is a constant on the separating streamline.


1971 ◽  
Vol 47 (1) ◽  
pp. 171-181 ◽  
Author(s):  
G. S. Janowitz

We consider the two-dimensional flow produced by the slow horizontal motion of a vertical plate of height 2b through a vertically stratified (ρ = ρ0(1 - βz)) non-diffusive viscous fluid. Our results are valid when U2 [Lt ] Ub/ν [Lt ] 1, where U is the speed of the plate and ν the kinematic viscosity of the fluid. Upstream of the body we find a blocking column of length 10−2b4/(Uν/βg. This column is composed of cells of closed streamlines. The convergence of these cells near the tips of the plate leads to alternate jets. The plate itself is embedded in a vertical shear layer of thickness (Uν/βg)1/3. In the upstream portion of this layer the vertical velocities are of order U and in the downstream portion of order Ub/(Uν/βg)1/3 ([Gt ] U). The flow is uniform and undisturbed downstream of this layer.


1973 ◽  
Vol 58 (4) ◽  
pp. 689-702 ◽  
Author(s):  
J. N. Newman

The force acting on a fish-like body with combined thickness and lifting effects is analysed on the assumption of inviscid flow. A general expression is developed for the pressure force on the body, which is analogous to the momentum-flux analysis for non-lifting bodies in classical hydrodynamics. For bodies with constant volume, the mean drag (or propulsive) force is expressed in terms of a contour integral around the vortex sheet behind the body. Attention is focused on the case of steady-state motion with constant angle of attack, and the induced drag is analysed for finned axisymmetric bodies using the slender-body approximation developed by Newman & Wu (1973). Unlike earlier results of Lighthill (1970), the lift–drag ratio in this case depends on the body thickness.


Author(s):  
Daniel T. Valentine

In this paper the computational problem examined is the impulsive start of a two-dimensional flat-plate hydrofoil at a fixed angle of attack. The method applied is an equally-spaced lumped-vortex panel method. The results from a lumped-vortex wake model and a shed-vortex sheet wake model are reported. Comparisons with the linear theory of Wagner (1925), the theoretical results associated with the single lumped-vortex wake model and the full wake model are presented. In addition, it is shown that the computational predictions are consistent with results reported by Katz and Plotkin (2001); they applied a distribution of vortices to model the wake. In the present paper the importance of resolving the chordwise pressure distribution in unsteady hydrofoil problems is elucidated. New predictions of both the evolution of lift and induced drag are reported for the instantaneously started flat plate. The computational predictions are compared with theorecticalpredictions also discussed in this paper.


(1) A study of some of the characteristics of the two-dimensional flow around an aerofoil mounted in a wind tunnel has been made by L. W. Bryant and D. H. Williams. This work included measurements of velocity in the neighbourhood of the aerofoil, and showed that under certain conditions the theoretical law of Kutta and Joukowski can be applied in practice to an aerofoil. The flow pattern measured in the wind tunnel was also compared with that for an inviscid flow having an equal circulation. The purpose of the present paper is to examine, in detail, the relationship between the inviscid and the wind-tunnel flows at the nose of an elliptic cylinder and also of an aerofoil of infinite span. Throughout the paper the term circulation is used in the usual hydrodynamic sense, it being understood that for a wind-tunnel flow the contour is not taken too close to the boundary of the body. Attention has been focussed on the forward stagnation point, because it is a well-defined point on the surface where the pressure is a maximum.


2017 ◽  
Vol 830 ◽  
pp. 439-478 ◽  
Author(s):  
X. Xia ◽  
K. Mohseni

Unsteady inviscid flow models of wings and airfoils have been developed to study the aerodynamics of natural and man-made flyers. Vortex methods have been extensively applied to reduce the dimensionality of these aerodynamic models, based on the proper estimation of the strength and distribution of the vortices in the wake. In such modelling approaches, one of the most fundamental questions is how the vortex sheets are generated and released from sharp edges. To determine the formation of the trailing-edge vortex sheet, the classical steady Kutta condition can be extended to unsteady situations by realizing that a flow cannot turn abruptly around a sharp edge. This condition can be readily applied to a flat plate or an airfoil with cusped trailing edge since the direction of the forming vortex sheet is known to be tangential to the trailing edge. However, for a finite-angle trailing edge, or in the case of flow separation away from a sharp corner, the direction of the forming vortex sheet is ambiguous. To remove any ad hoc implementation, the unsteady Kutta condition, the conservation of circulation as well as the conservation laws of mass and momentum are coupled to analytically solve for the angle, strength and relative velocity of the trailing-edge vortex sheet. The two-dimensional aerodynamic model together with the proposed vortex-sheet formation condition is verified by comparing flow structures and force calculations with experimental results for several airfoil motions in steady and unsteady background flows.


1997 ◽  
Vol 353 ◽  
pp. 331-355 ◽  
Author(s):  
I. EAMES ◽  
J. C. R. HUNT

We examine the inviscid flow generated around a body moving impulsively from rest with a constant velocity U in a constant density gradient, ∇ρ0, which is assumed to be weak in the sense ε=a[mid ]∇ρ0[mid ] /ρ0[Lt ]1, where a is the length scale of the body. In the absence of a density gradient (ε=0), the flow is irrotational and no force acts on the body. When 0<ε[Lt ]1, vorticity is generated by a baroclinic torque and vortex stretching, which introduce a rotational component into the flow. The aim is to calculate both the flow around the body and the force acting on it.When a two-dimensional body moves perpendicularly to the density gradient U·∇ρ0=0, the density and velocity field are both steady in the body's frame of reference and the vorticity field decays with distance from the body. When a three-dimensional body moves perpendicularly to the density gradient, the vorticity field is regular in the main flow region, [Dscr ]M, but is singular in a thin inner region [Dscr ]I located adjacent to the body and to the downstream-attached streamline, and the flow is characterized by trailing horseshoe vortices. When the body moves parallel to the density gradient U×∇ρ0=0, the density field is unsteady in the body's frame of reference; however to leading order the flow is steady in the region [Dscr ]M moving with the body for Ut/a[Gt ]1. In the thin region [Dscr ]I of thickness O(aε), the density gradient and vorticity are singular. When U×∇ρ0=0 this singularity leads to a downstream ‘jet’ with velocities of O(−(U·∇ρ0) Ua/(ρ0U)) on the downstream attached streamline(s). In the far field the flow is characterized by a sink of strength CM[Vscr ] (U·∇ρ0) /2ρ0, located at the origin, where CM is the added-mass coefficient of the body and [Vscr ] is the body's volume.The forces acting on a body moving steadily in a weak density gradient are calculated by considering the steady relative velocity field in region [Dscr ]M and evaluating the momentum flux far from the body. When U·∇ρ0=0, a lift force, CL[Vscr ] (U·∇ρ0)×U, pushes the body towards the denser fluid, where the lift coefficient is CL=CM/2 for a three-dimensional body, that is axisymmetric about U, and is CL=(CM+1)/2 for a two-dimensional body. The direction of the lift force is unchanged when U is reversed. A general expression for the forces on bodies moving in a weak shear and perpendicularly to a density gradient is calculated. When U×∇ρ0=0, a drag force −CD[Vscr ] (U·∇ρ0)U retards the body as it moves into denser fluid, where the drag coefficient is CD=CM/2, for both two- and three-dimensional axisymmetric bodies. The direction of the drag force changes sign when U is reversed. There are two contributions to the drag calculation from the far field; the first is from the wake ‘jet’ on the attached streamline(s) caused by the rotational component of the flow and this leads to an accelerating force. The second and larger contribution arises from a downstream density variation, caused by the distortion of the isopycnal surfaces by the primary irrotational flow, and this leads to a drag force.When cylinders or spheres move with a velocity U at arbitrary orientation to the density gradient, it is shown that they are acted on by a linear combination of lift and drag forces. Calculations of their trajectories show that they initially slow down or accelerate on a length scale of order ρ0/[mid ]∇ρ0[mid ] (independent of [Vscr ] and U) as they move into regions of increasing or decreasing density, but in general they turn and ultimately move parallel to the density gradient in the direction of increasing density gradient.


1981 ◽  
Vol 23 (1) ◽  
pp. 1-12 ◽  
Author(s):  
R. I. Lewis

A method is presented for the computation of separated flows past two-dimensional bodies of arbitrary shape. The surface vorticity technique is used to model the body flow and is combined with vorticity generation, shedding, and convection schemes which simulate the separation regime. The method is applied here especially to bluff body flows and illustrative examples have been limited to symmetrical or half plane flows only. An extension of the technique to free streamline flows is described and illustrated by comparison with the classical solution for free streamline separation from a flat plate.


2001 ◽  
Vol 40 (01) ◽  
pp. 31-37 ◽  
Author(s):  
U. Wellner ◽  
E. Voth ◽  
H. Schicha ◽  
K. Weber

Summary Aim: The influence of physiological and pharmacological amounts of iodine on the uptake of radioiodine in the thyroid was examined in a 4-compartment model. This model allows equations to be derived describing the distribution of tracer iodine as a function of time. The aim of the study was to compare the predictions of the model with experimental data. Methods: Five euthyroid persons received stable iodine (200 μg, 10 mg). 1-123-uptake into the thyroid was measured with the Nal (Tl)-detector of a body counter under physiological conditions and after application of each dose of additional iodine. Actual measurements and predicted values were compared, taking into account the individual iodine supply as estimated from the thyroid uptake under physiological conditions and data from the literature. Results: Thyroid iodine uptake decreased from 80% under physiological conditions to 50% in individuals with very low iodine supply (15 μg/d) (n = 2). The uptake calculated from the model was 36%. Iodine uptake into the thyroid did not decrease in individuals with typical iodine supply, i.e. for Cologne 65-85 μg/d (n = 3). After application of 10 mg of stable iodine, uptake into the thyroid decreased in all individuals to about 5%, in accordance with the model calculations. Conclusion: Comparison of theoretical predictions with the measured values demonstrated that the model tested is well suited for describing the time course of iodine distribution and uptake within the body. It can now be used to study aspects of iodine metabolism relevant to the pharmacological administration of iodine which cannot be investigated experimentally in humans for ethical and technical reasons.


Sign in / Sign up

Export Citation Format

Share Document