Climbot: A Bio-Inspired Modular Biped Climbing Robot—System Development, Climbing Gaits, and Experiments

2016 ◽  
Vol 8 (2) ◽  
Author(s):  
Yisheng Guan ◽  
Li Jiang ◽  
Haifei Zhu ◽  
Wenqiang Wu ◽  
Xuefeng Zhou ◽  
...  

Agriculture, forestry, and building industry would be prospective fields of robotic applications. High-rise tasks in these fields require robots with climbing skills. Motivated by these potential applications and inspired by animal climbing motion, we have developed a biped climbing robot—Climbot. Built with a modular approach, the robot consists of five joint modules connected in series and two special grippers mounted at the ends, with the scalability of changing degrees-of-freedom (DoFs). With this configuration, Climbot not only has superior mobility on multiple climbing media, such as poles and trusses, but also has the function of grasping and manipulating objects. It is a kind of “mobile” manipulator and represents an advancement in development of climbing robots. In this paper, we first present the development of this climbing robot with modular and bio-inspired methods, and then propose and compare three climbing gaits based on the unique configuration and features of the robot. A series of challenging and comprehensive experiments with the robot climbing in a truss and performing an outdoor manipulation task are carried out, to illustrate the feasibility, the features, the climbing, and manipulating functions of the robot, and to verify the effectiveness of the proposed gaits.

2010 ◽  
Vol 22 (3) ◽  
pp. 322-332
Author(s):  
Natsuki Yamanobe ◽  
◽  
Ee Sian Neo ◽  
Eiichi Yoshida ◽  
Nobuyuki Kita ◽  
...  

The OpenRT Platform, an integrated development environment for component-based robot system development, is being constructed in order to enhance intelligent robot research and development efficiency. In this paper, a mobile manipulator system that can bring human indicated objects like a service dog is developed based on the OpenRT Platform. The system works with several components providing manipulation, locomotion, and communication functions developed as examples modularizing intelligent robotic functions. These components are integrated using scenario tools in the OpenRT Platform for achieving target tasks.


2019 ◽  
Vol 9 (15) ◽  
pp. 3009 ◽  
Author(s):  
Qing Chang ◽  
Xiao Luo ◽  
Zhixia Qiao ◽  
Qian Li

A novel robot capable of performing maintenance and inspection tasks for railway bridges is proposed in this paper. Termed CMBOT (climbing manipulator robot), the robot is a combination of a five-degrees-of-freedom (5-Dof) biped climbing robot with two electromagnetic feet and a redundant manipulator with 7-Dof. This capability offers important advantages for performing maintenance and inspection tasks for railway bridges. Several fundamental issues of the CMBOT, such as robotic system development and motion planning algorithms, are addressed in this paper. A series of simulations and prototype experiments were conducted to validate the proposed robotic systems and motion planning algorithm. The results of the experiments show the reliability of the robotic systems and the efficiency of the motion planning algorithm.


Author(s):  
Jer-Fu Wang ◽  
Chun-Hung Chen ◽  
Chang-Ching Chang ◽  
Chi-Chang Lin

Abstract This paper proposes a passive vibration control device, series rolling-pendulum tuned mass damper (SRPTMD), with a “ball-in-ball” configuration. A conventional pendulum TMD (PTMD) generally requires a long cable length that usually exceeds one-story height for high-rise buildings. A rolling-pendulum TMD (RPTMD) is a mass that can roll on a base with a curvature instead of swaying with a cable, significantly reducing the requirement of vertical rooms. In addition, a ball-in-ball SRPTMD is equivalent to a system with two degrees of freedom in series. This study aimed to derive equations of motion of the primary building-SRPTMD system, conduct a parametric study for SRPTMD, and investigate the structural control performance of an SRPTMD. Results showed that an SRPTMD performed similarly to an RPTMD. One advantage of an SRPTMD is that the fundamental natural frequency of an SRPTMD can be altered to a certain extent by changing the radius ratio of the inner ball to the outer ball, whereas the natural frequency of an RPTMD can only be altered by changing the curvature of its base, which is far more difficult. Another advantage is that the two modal frequencies of an SRPTMD can be manipulated by selecting a specific set of radius ratios between the base, the outer ball, and the inner ball, which means that an SRPTMD has higher potential on multiple modes control.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3653
Author(s):  
Lilia Sidhom ◽  
Ines Chihi ◽  
Ernest Nlandu Kamavuako

This paper proposes an online direct closed-loop identification method based on a new dynamic sliding mode technique for robotic applications. The estimated parameters are obtained by minimizing the prediction error with respect to the vector of unknown parameters. The estimation step requires knowledge of the actual input and output of the system, as well as the successive estimate of the output derivatives. Therefore, a special robust differentiator based on higher-order sliding modes with a dynamic gain is defined. A proof of convergence is given for the robust differentiator. The dynamic parameters are estimated using the recursive least squares algorithm by the solution of a system model that is obtained from sampled positions along the closed-loop trajectory. An experimental validation is given for a 2 Degrees Of Freedom (2-DOF) robot manipulator, where direct and cross-validations are carried out. A comparative analysis is detailed to evaluate the algorithm’s effectiveness and reliability. Its performance is demonstrated by a better-quality torque prediction compared to other differentiators recently proposed in the literature. The experimental results highlight that the differentiator design strongly influences the online parametric identification and, thus, the prediction of system input variables.


Author(s):  
Michael John Chua ◽  
Yen-Chen Liu

Abstract This paper presents cooperation and null-space control for networked mobile manipulators with high degrees of freedom (DOFs). First, kinematic model and Euler-Lagrange dynamic model of the mobile manipulator, which has an articulated robot arm mounted on a mobile base with omni-directional wheels, have been presented. Then, the dynamic decoupling has been considered so that the task-space and the null-space can be controlled separately to accomplish different missions. The motion of the end-effector is controlled in the task-space, and the force control is implemented to make sure the cooperation of the mobile manipulators, as well as the transportation tasks. Also, the null-space control for the manipulator has been combined into the decoupling control. For the mobile base, it is controlled in the null-space to track the velocity of the end-effector, avoid other agents, avoid the obstacles, and move in a defined range based on the length of the manipulator without affecting the main task. Numerical simulations have been addressed to demonstrate the proposed methods.


Author(s):  
Reed A. Johnson ◽  
John J. O’Neill ◽  
Rodney L. Dockter ◽  
Timothy M. Kowalewski

Bioprinting technology has been rapidly increasing in popularity in the field of tissue engineering. Potential applications include tissue or organ regeneration, creation of biometric multi-layered skin tissue, and burn wound treatment [1]. Recent work has shown that living cells can be successfully applied using inkjet heads without damaging the cells [2]. Electrostatically driven inkjet systems have the benefit of not generating significant heat and therefore do not damage the cell structure. Inkjets have the additional benefit of depositing small droplets with micrometer resolution and therefore can be used to build up tissue like structures. Previous attempts at tracking and drawing on a hand include either direct contact with the hand [3] or tracking the hand only in two degrees of freedom [4]. In this work we present an approach to track a hand with three degrees of freedom and accurately apply a substance contact free to the hand in a desired pattern using a bioprinting compatible inkjet. The third degree of freedom, in this case depth from the hand surface, provides improved control over the distance between the inkjet head and object, thus increasing deposition accuracy.


Robotica ◽  
2011 ◽  
Vol 30 (1) ◽  
pp. 53-65 ◽  
Author(s):  
M. H. Korayem ◽  
V. Azimirad ◽  
H. Vatanjou ◽  
A. H. Korayem

SUMMARYThis paper presents a new method using hierarchical optimal control for path planning and calculating maximum allowable dynamic load (MADL) of wheeled mobile manipulator (WMM). This method is useful for high degrees of freedom WMMs. First, the overall system is decoupled to a set of subsystems, and then, hierarchical optimal control is applied on them. The presented algorithm is a two-level hierarchical algorithm. In the first level, interaction terms between subsystems are fixed, and in the second level, the optimization problem for subsystems is solved. The results of second level are used for calculating new estimations of interaction variables in the first level. For calculating MADL, the load on the end effector is increased until actuators get into saturation. Given a large-scale robot, we show how the presenting in distributed hierarchy in optimal control helps to find MADL fast. Also, it enables us to treat with complicated cost functions that are generated by obstacle avoidance terms. The effectiveness of this approach on simulation case studies for different types of WMMs as well as an experiment for a mobile manipulator called Scout is shown.


Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7538
Author(s):  
Wenkai Huang ◽  
Wei Hu ◽  
Tao Zou ◽  
Junlong Xiao ◽  
Puwei Lu ◽  
...  

Most existing wall-climbing robots have a fixed range of load capacity and a step distance that is small and mostly immutable. It is therefore difficult for them to adapt to a discontinuous wall with particularly large gaps. Based on a modular design and inspired by leech peristalsis and internal soft-bone connection, a bionic crawling modular wall-climbing robot is proposed in this paper. The robot demonstrates the ability to handle variable load characteristics by carrying different numbers of modules. Multiple motion modules are coupled with the internal soft bone so that they work together, giving the robot variable-step-distance functionality. This paper establishes the robotic kinematics model, presents the finite element simulation analysis of the model, and introduces the design of the multi-module cooperative-motion method. Our experiments show that the advantage of variable step distance allows the robot not only to quickly climb and turn on walls, but also to cross discontinuous walls. The maximum climbing step distance of the robot can reach 3.6 times the length of the module and can span a discontinuous wall with a space of 150 mm; the load capacity increases with the number of modules in series. The maximum load that modules can carry is about 1.3 times the self-weight.


2018 ◽  
Vol 15 (03) ◽  
pp. 1850005 ◽  
Author(s):  
Yeong-Geol Bae ◽  
Seul Jung

This paper presents the balancing control performance of a mobile manipulator built in the laboratory as a service robot called Korean robot worker (KOBOKER). The robot is designed and implemented with two wheels as a mobile base and two arms with six degrees-of-freedom each. Kinematics and dynamics of the robot are analyzed. For the balancing control performance, two wheels are controlled independently by the time-delayed control method based on the inertia model of the robot. The acceleration information obtained directly from the sensor is used for the modified disturbance observer structure called an acceleration-based disturbance observer (AbDOB). Experimental studies of the balancing control of the robot are conducted to compare the control performances by both a PID control method and an AbDOB.


Author(s):  
Joseph Pegna

Abstract In the quest for ever finer levels of technology integration, mechanical linkages reach their precision limits at about 5micrometers per meter of workspace. Beyond this physical limit, all six dimensional degrees of freedom need to be precisely ascertained to account for mechanical imperfections. This paper substantiates Wu’s vision of “precision machines without precision machinery.” A formulation and statistical characterization of position and orientation error propagation in rigid bodies are presented for two extreme models of measurement. It is shown that error distribution is uniquely dependent upon the design of the measurement plan. The theoretical foundations presented were evolved in the course of designing precision machinery. Other potential applications include: fixture design, metrology, and geometric tolerance verification.


Sign in / Sign up

Export Citation Format

Share Document