A Mathematical Model for Understanding Fluid Flow Through Engineered Tissues Containing Microvessels

2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Kristen T. Morin ◽  
Michelle S. Lenz ◽  
Caroline A. Labat ◽  
Robert T. Tranquillo

Knowledge is limited about fluid flow in tissues containing engineered microvessels, which can be substantially different in topology than native capillary networks. A need exists for a computational model that allows for flow through tissues dense in nonpercolating and possibly nonperfusable microvessels to be efficiently evaluated. A finite difference (FD) model based on Poiseuille flow through a distribution of straight tubes acting as point sources and sinks, and Darcy flow through the interstitium, was developed to describe fluid flow through a tissue containing engineered microvessels. Accuracy of the FD model was assessed by comparison to a finite element (FE) model for the case of a single tube. Because the case of interest is a tissue with microvessels aligned with the flow, accuracy was also assessed in depth for a corresponding 2D FD model. The potential utility of the 2D FD model was then explored by correlating metrics of flow through the model tissue to microvessel morphometric properties. The results indicate that the model can predict the density of perfused microvessels based on parameters that can be easily measured.

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Nikolai D. Botkin ◽  
Andrey E. Kovtanyuk ◽  
Varvara L. Turova ◽  
Irina N. Sidorenko ◽  
Renée Lampe

The aim of this paper consists in the derivation of an analytic formula for the hydraulic resistance of capillaries, taking into account the tube hematocrit level. The consistency of the derived formula is verified using Finite Element simulations. Such an effective formula allows for assigning resistances, depending on the hematocrit level, to the edges of networks modeling biological capillary systems, which extends our earlier models of blood flow through large capillary networks. Numerical simulations conducted for large capillary networks with random topologies demonstrate the importance of accounting for the hematocrit level for obtaining consistent results.


2019 ◽  
Vol 12 (32) ◽  
pp. 1-6
Author(s):  
Abid Ali Memon ◽  
Hisam-uddin Shaikh ◽  
Baqir Ali Shah ◽  
Muhammad Afzal Soomro ◽  
Abdul Ghafoor Shaikh ◽  
...  

Author(s):  
Philip Diwakar ◽  
Yuqing Liu ◽  
Matt Jaouhari

Designing structures resistant to failure due to fluid induced vibration is a challenge. This paper shows a methodology of evaluating the cycles to failure of thermowells placed in a fluid flow through a large pipe in supercritical operation. The ASME PTC guide describes using Finite Element Analysis (FEA) to evaluate these conditions on a case by case basis. One case from several validated cases is presented using measurements available from the field.


1998 ◽  
Vol 22 ◽  
pp. S759-S761 ◽  
Author(s):  
Louis Fradette ◽  
Huai Z. Li ◽  
Lionel Choplin ◽  
Philippe Tanguy

Sign in / Sign up

Export Citation Format

Share Document