Characterization of Pulsating Submerged Jet—A Particle Image Velocimetry Study

Author(s):  
Harekrishna Yadav ◽  
Atul Srivastava ◽  
Amit Agrawal

An experimental investigation has been performed to determine the flow characteristics of an axisymmetric submerged water jet with superimposed periodically oscillating flow. The objective of the study is to quantify in detail the near field of a pulsating jet using the particle image velocimetry (PIV) technique. The amplitude and frequency of oscillations are varied separately and the effect of each parameter is determined for a range of Reynolds numbers (ReD = 1602, 2318, and 3600). The experimental results indicate that for a given Reynolds number and amplitude, with an increase in the frequency of pulsation, the vortex formation shifts toward the nozzle exit. The number of vortices also increases with an increase in the jet pulsation frequency. Broadening of the jet and shortening of the potential core length are also observed. This indicates that mixing with the surrounding fluid is higher with pulsating jet even at relatively low Reynolds numbers. It is observed that frequency up to a critical frequency helps increase entrainment of the surrounding fluid. An upper critical frequency beyond which pulsation does not affect the entrainment is also determined. These results should eventually lead to a better understanding of the physical phenomena responsible for enhanced heat transfer rates in the presence of pulsating jets.

Author(s):  
S C M Yu ◽  
J B Zhao

Flow characteristics in straight tubes with an asymmetric bulge have been investigated using particle image velocimetry (PIV) over a range of Reynolds numbers from 600 to 1200 and at a Womersley number of 22. A mixture of glycerine and water (approximately 40:60 by volume) was used as the working fluid. The study was carried out because of their relevance in some aspects of physiological flows, such as arterial flow through a sidewall aneurysm. Results for both steady and pulsatile flow conditions were obtained. It was found that at a steady flow condition, a weak recirculating vortex formed inside the bulge. The recirculation became stronger at higher Reynolds numbers but weaker at larger bulge sizes. The centre of the vortex was located close to the distal neck. At pulsatile flow conditions, the vortex appeared and disappeared at different phases of the cycle, and the sequence was only punctuated by strong forward flow behaviour (near the peak flow condition). In particular, strong flow interactions between the parent tube and the bulge were observed during the deceleration phase. Stents and springs were used to dampen the flow movement inside the bulge. It was found that the recirculation vortex could be eliminated completely in steady flow conditions using both devices. However, under pulsatile flow conditions, flow velocities inside the bulge could not be suppressed completely by both devices, but could be reduced by more than 80 per cent.


2004 ◽  
Author(s):  
Meredith R. Martin

The transition from laminar to turbulent in-tube flow is studied in this paper. Water flow in a glass tube with an inside diameter of 21.7 mm was investigated by two methods. First, a dye visualization test using a setup similar to the 1883 experiment of Osborne Reynolds was conducted. For the dye visualization, Reynolds numbers ranging from approximately 1000 to 3500 were tested and the transition from laminar to turbulent flow was observed between Reynolds numbers of 2500 and 3500. For the second method, a particle image velocimetry (PIV) system was used to measure the velocity profiles of flow in the same glass tube at Reynolds numbers ranging from approximately 500 to 9000. The resulting velocity profiles were compared to theoretical laminar profiles and empirical turbulent power-law profiles. Good agreement was found between the lower Reynolds number flow and the laminar profile, and between the higher Reynolds number flow and turbulent power-law profile. In between the flow appeared to be in a transition region and deviated some between the two profiles.


2015 ◽  
Vol 1104 ◽  
pp. 45-50 ◽  
Author(s):  
Zuzana Broučková ◽  
Shu Shen Hsu ◽  
An Bang Wang ◽  
Zdeněk Trávníček

A synthetic jet (SJ) is a fluid jet flow generated from fluid oscillations during a periodical fluid exchange between an actuator cavity and surrounding fluid. A water synthetic jet was generated from submerged piezoelectric-driven SJ actuator. The actuator slot width was 0.36 mm. The experiments were performed using laser induced fluorescence (LIF) flow visualization and particle image velocimetry (PIV) techniques, both in a phase locked setup. The LIF visualization was used to demonstrate three-dimensional nature of the SJ formation process and to estimate SJ velocity. The PIV experiment quantified SJ velocity cycles in chosen plans. The driven frequency was adjusted near the resonance at approximately 46 Hz. It was evaluated theoretically and confirmed experimentally by means of LIF visualization. The time-mean orifice velocity and the Reynolds number were estimated asU0= 0.07–0.10 m/s andRe= 100–150, respectively.


Author(s):  
Vishwanath Somashekar ◽  
Michael G. Olsen ◽  
K. B. Chandran ◽  
H. S. Udaykumar

The advances made in the field of cardiovascular prostheses have proved invaluable in saving human lives. However, implanting such a device may cause unwanted results like thrombosis, the formation of blood clots inside blood vessels. This formation of thrombi can affect the flow of blood, which if left untreated may result in strokes. As the blood moves through various arteries and veins, the platelets move toward the periphery and the red blood cells (RBC) are more concentrated near the center. This process is called margination and has been shown by Aarts et al.[1]. The platelets in essence are policing the endothelial layer, and with any change in the endothelial layer, say as a result of injury, the platelets get activated, which in turn starts a domino effect eventually resulting in the formation of a clot to stop the bleeding. These platelets can also get activated due to their presence in regions of high shear as is the case when the blood is flowing through narrow constrictions (for example, when a mechanical heart valve is about to close). This phenomenon is referred to as Shear Induced Platelet Activation (SIPA)[2]. The goal of this research is to study the effect of constricted geometries, high shear rates and erythrocyte-platelet interactions on platelet activation and aggregate formation, events that are critical in the initiation of thrombosis. In order to understand SIPA, one must first obtain a detailed flow in these constricted geometries. Numerous studies have been performed to obtain the flow fields of blood flowing through microchannels [3, 4]. However, the Reynolds numbers based on the characteristic length of the microchannel were in the O (1). It is worth noting that for such laminar flows confocal particle image velocimetry can be successfully applied. In this present study, the Reynolds numbers were in the O (100), rendering confocal mPIV impractical and making Micro Particle Image Velocimetry (mPIV) a clear choice.


Author(s):  
Hirotaka Takeuchi ◽  
Yuji Tasaka ◽  
Yuichi Murai ◽  
Yasushi Takeda ◽  
Hideaki Tezuka ◽  
...  

Particle image velocimetry is applied to measurement of airflows around three types of permeable circular cylinders. The experimental model of the permeable cylinder is made of squared meshed sheet rolled in circle. Water mist smoke is used as air tracer, which is generated with dry ice in a chamber to produce fine spatial density fluctuation for guaranteeing the PIV quality. Since the flow involves fluctuation in a very wide wavenumber from the cylinder size to mesh-dependent eddies, calculating brightness spectrum quantitatively assesses the smoke image quality. The experiment is carried out in an open type wind tunnel. The following results are obtained when the measurement results are compared to those of a solid cylinder. 1: The flow just behind the cylinder has forward velocity due to the permeability while the solid cylinder has reverse flow in the wake. This feature relaxes near field excitation of Karman vortex shedding. 2: The reattachment point behind the cylinder displaces several times as the solid case. As a result of the above two phenomena, the peak potion of the turbulence energy appears in the far downstream region as the permeability of the cylinder increases.


2011 ◽  
Vol 6 (4) ◽  
pp. 42-50
Author(s):  
Yuriy Litvinenko ◽  
Maria Litvinenko ◽  
Mikhail Katasonov

An acoustic field influence on a development of the plane microjet at low Reynolds numbers were investigated experimentally employing Particle Image Velocimetry (PIV). Measurements were performed at synchronization of an acoustic signal phase with a laser flash. Instantaneous velocity fields of different cross- and longitudinal sections are occurred. Receptivity of the plane microjet to transversal acoustic disturbances is shown. PIV-images, correspond to them vector fields and vorticity fields are presented


2016 ◽  
Vol 13 (114) ◽  
pp. 20150850 ◽  
Author(s):  
Lindsay D. Waldrop ◽  
M. A. R. Koehl

Capture of odorant molecules by olfactory organs from the surrounding fluid is the first step of smelling. Sniffing intermittently moves fluid across sensory surfaces, increasing delivery rates of molecules to chemosensory receptors and providing discrete odour samples. Aquatic malacostracan crustaceans sniff by flicking olfactory antennules bearing arrays of chemosensory hairs (aesthetascs), capturing water in the arrays during downstroke and holding the sample during return stroke. Terrestrial malacostracans also flick antennules, but how their flicking affects odour capture from air is not understood. The terrestrial hermit crab, Coenobita rugosus , uses antennules bearing shingle-shaped aesthetascs to capture odours. We used particle image velocimetry to measure fine-scale fluid flow relative to a dynamically scaled physical model of a flicking antennule, and computational simulations to calculate diffusion to aesthetascs by odorant molecules carried in that flow. Air does not flow into the aesthetasc array during flick downstrokes or recovery strokes. Odorants are captured from air flowing around the outside of the array during flick downstrokes, when aesthetascs face upstream and molecule capture rates are 21% higher than for stationary antennules. Bursts of flicking followed by pauses deliver discrete odour samples to olfactory sensors, causing intermittency in odour capture by a different mechanism than aquatic crustaceans use.


Sign in / Sign up

Export Citation Format

Share Document