scholarly journals Three-Dimensional Printing Based Hybrid Manufacturing of Microfluidic Devices

Author(s):  
Yunus Alapan ◽  
Muhammad Noman Hasan ◽  
Richang Shen ◽  
Umut A. Gurkan

Microfluidic platforms offer revolutionary and practical solutions to challenging problems in biology and medicine. Even though traditional micro/nanofabrication technologies expedited the emergence of the microfluidics field, recent advances in advanced additive manufacturing hold significant potential for single-step, stand-alone microfluidic device fabrication. One such technology, which holds a significant promise for next generation microsystem fabrication is three-dimensional (3D) printing. Presently, building 3D printed stand-alone microfluidic devices with fully embedded microchannels for applications in biology and medicine has the following challenges: (i) limitations in achievable design complexity, (ii) need for a wider variety of transparent materials, (iii) limited z-resolution, (iv) absence of extremely smooth surface finish, and (v) limitations in precision fabrication of hollow and void sections with extremely high surface area to volume ratio. We developed a new way to fabricate stand-alone microfluidic devices with integrated manifolds and embedded microchannels by utilizing a 3D printing and laser micromachined lamination based hybrid manufacturing approach. In this new fabrication method, we exploit the minimized fabrication steps enabled by 3D printing, and reduced assembly complexities facilitated by laser micromachined lamination method. The new hybrid fabrication method enables key features for advanced microfluidic system architecture: (i) increased design complexity in 3D, (ii) improved control over microflow behavior in all three directions and in multiple layers, (iii) transverse multilayer flow and precisely integrated flow distribution, and (iv) enhanced transparency for high resolution imaging and analysis. Hybrid manufacturing approaches hold great potential in advancing microfluidic device fabrication in terms of standardization, fast production, and user-independent manufacturing.

2019 ◽  
Vol 3 (1) ◽  
pp. 26 ◽  
Author(s):  
Mohamed Mohamed ◽  
Hitendra Kumar ◽  
Zongjie Wang ◽  
Nicholas Martin ◽  
Barry Mills ◽  
...  

With the dramatic increment of complexity, more microfluidic devices require 3D structures, such as multi-depth and -layer channels. The traditional multi-step photolithography is time-consuming and labor-intensive and also requires precise alignment during the fabrication of microfluidic devices. Here, we present an inexpensive, single-step, and rapid fabrication method for multi-depth microfluidic devices using a high-resolution liquid crystal display (LCD) stereolithographic (SLA) three-dimensional (3D) printing system. With the pixel size down to 47.25 μm, the feature resolutions in the horizontal and vertical directions are 150 μm and 50 μm, respectively. The multi-depth molds were successfully printed at the same time and the multi-depth features were transferred properly to the polydimethylsiloxane (PDMS) having multi-depth channels via soft lithography. A flow-focusing droplet generator with a multi-depth channel was fabricated using the presented 3D printing method. Experimental results show that the multi-depth channel could manipulate the morphology and size of droplets, which is desired for many engineering applications. Taken together, LCD SLA 3D printing is an excellent alternative method to the multi-step photolithography for the fabrication of multi-depth microfluidic devices. Taking the advantages of its controllability, cost-effectiveness, and acceptable resolution, LCD SLA 3D printing can have a great potential to fabricate 3D microfluidic devices.


2020 ◽  
Vol 13 (1) ◽  
pp. 45-65 ◽  
Author(s):  
Anna V. Nielsen ◽  
Michael J. Beauchamp ◽  
Gregory P. Nordin ◽  
Adam T. Woolley

Traditional microfabrication techniques suffer from several disadvantages, including the inability to create truly three-dimensional (3D) architectures, expensive and time-consuming processes when changing device designs, and difficulty in transitioning from prototyping fabrication to bulk manufacturing. 3D printing is an emerging technique that could overcome these disadvantages. While most 3D printed fluidic devices and features to date have been on the millifluidic size scale, some truly microfluidic devices have been shown. Currently, stereolithography is the most promising approach for routine creation of microfluidic structures, but several approaches under development also have potential. Microfluidic 3D printing is still in an early stage, similar to where polydimethylsiloxane was two decades ago. With additional work to advance printer hardware and software control, expand and improve resin and printing material selections, and realize additional applications for 3D printed devices, we foresee 3D printing becoming the dominant microfluidic fabrication method.


2021 ◽  
Author(s):  
Christine Poon ◽  
Albert Fahrenbach

3D printing and makerspace technologies are increasingly explored as alternative techniques to soft lithography for making microfluidic devices, and for their potential to segue towards scalable commercial fabrication. Here we considered the optimal application of current benchtop 3D printing for microfluidic device fabrication through the lens of lean manufacturing and present a straightforward but robust rapid prototyped moulding system that enables easy estimation of more precise quantities of polydimethylsiloxane (PDMS) required per device to reduce waste and importantly, making devices with better defined depths and volumes for (i) modelling gas exchange and (ii) fabrication consistency as required for quality-controlled production. We demonstrate that this low-cost moulding step can enable a 40 – 300% reduction in the amount of PDMS required for making individual devices compared to the established method of curing approximately 30 grams of PDMS prepolymer overlaid on a 4” silicon wafer master in a standard plastic petri dish. Other process optimisation techniques were also investigated and are recommended as readily implementable changes to current laboratory and foundry-level microfluidic device fabrication protocols for making devices either out of PDMS or other elastomers. Simple calculators are provided as a step towards more streamlined, software controlled and automated design-to-fabrication workflows for both custom and scalable lean manufacturing of microfluidic devices.


Inventions ◽  
2018 ◽  
Vol 3 (3) ◽  
pp. 60 ◽  
Author(s):  
Bruce Gale ◽  
Alexander Jafek ◽  
Christopher Lambert ◽  
Brady Goenner ◽  
Hossein Moghimifam ◽  
...  

Microfluidic devices currently play an important role in many biological, chemical, and engineering applications, and there are many ways to fabricate the necessary channel and feature dimensions. In this review, we provide an overview of microfabrication techniques that are relevant to both research and commercial use. A special emphasis on both the most practical and the recently developed methods for microfluidic device fabrication is applied, and it leads us to specifically address laminate, molding, 3D printing, and high resolution nanofabrication techniques. The methods are compared for their relative costs and benefits, with special attention paid to the commercialization prospects of the various technologies.


2021 ◽  
Author(s):  
Christine Poon ◽  
Albert Fahrenbach

3D printing and makerspace technologies are increasingly explored as alternative techniques to soft lithography for making microfluidic devices, and for their potential to segue towards scalable commercial fabrication. Here we considered the optimal application of current benchtop 3D printing for microfluidic device fabrication through the lens of lean manufacturing and present a straightforward but robust rapid prototyped moulding system that enables easy estimation of more precise quantities of polydimethylsiloxane (PDMS) required per device to reduce waste and importantly, making devices with better defined depths and volumes for (i) modelling gas exchange and (ii) fabrication consistency as required for quality-controlled production. We demonstrate that this low-cost moulding step can enable a 40 – 300% reduction in the amount of PDMS required for making individual devices compared to the established method of curing approximately 30 grams of PDMS prepolymer overlaid on a 4” silicon wafer master in a standard plastic petri dish. Other process optimisation techniques were also investigated and are recommended as readily implementable changes to current laboratory and foundry-level microfluidic device fabrication protocols for making devices either out of PDMS or other elastomers. Simple calculators are provided as a step towards more streamlined, software controlled and automated design-to-fabrication workflows for both custom and scalable lean manufacturing of microfluidic devices.


RSC Advances ◽  
2018 ◽  
Vol 8 (66) ◽  
pp. 37693-37699 ◽  
Author(s):  
Dong-Heon Ha ◽  
Dong-Hyeon Ko ◽  
Jin-oh Kim ◽  
Do Jin Im ◽  
Byoung Soo Kim ◽  
...  

Rapid on-demand sacrificial printing techniques using suitable combinations of resin and sacrificial materials would be desirable to fabricate versatile and functional microfluidic devices with complex designs and chemical resistance.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Tangi Aubert ◽  
Jen-Yu Huang ◽  
Kai Ma ◽  
Tobias Hanrath ◽  
Ulrich Wiesner

Abstract The convergence of 3D printing techniques and nanomaterials is generating a compelling opportunity space to create advanced materials with multiscale structural control and hierarchical functionalities. While most nanoparticles consist of a dense material, less attention has been payed to 3D printing of nanoparticles with intrinsic porosity. Here, we combine ultrasmall (about 10 nm) silica nanocages with digital light processing technique for the direct 3D printing of hierarchically porous parts with arbitrary shapes, as well as tunable internal structures and high surface area. Thanks to the versatile and orthogonal cage surface modifications, we show how this approach can be applied for the implementation and positioning of functionalities throughout 3D printed objects. Furthermore, taking advantage of the internal porosity of the printed parts, an internal printing approach is proposed for the localized deposition of a guest material within a host matrix, enabling complex 3D material designs.


2021 ◽  
Author(s):  
Lamees El Nihum ◽  
Nandan Shettigar ◽  
Debjyoti Banerjee ◽  
Robert Krencik

Abstract The focus of this review is to describe advances in three-dimensional (3D) organoids reported in the literature with an emphasis on the engineering of microfluidic device platforms for investigating neuro-organoids. Furthermore, the paper will assess current limitations in microfluidic design that must be addressed for realizing the full potential of brain-on-a-chip devices.


Author(s):  
Travis S. Emery ◽  
Anna Jensen ◽  
Koby Kubrin ◽  
Michael G. Schrlau

Three-dimensional (3D) printing is a novel technology whose versatility allows it to be implemented in a multitude of applications. Common fabrication techniques implemented to create microfluidic devices, such as photolithography, wet etching, etc., can often times be time consuming, costly, and make it difficult to integrate external components. 3D printing provides a quick and low-cost technique that can be used to fabricate microfluidic devices in a range of intricate geometries. External components, such as nanoporous membranes, can additionally be easily integrated with minimal impact to the component. Here in, low-cost 3D printing has been implemented to create a microfluidic device to enhance understanding of flow through carbon nanotube (CNT) arrays manufactured for gene transfection applications. CNTs are an essential component of nanofluidic research due to their unique mechanical and physical properties. CNT arrays allow for parallel processing however, they are difficult to construct and highly prone to fracture. As a means of aiding in the nanotube arrays’ resilience to fracture and facilitating its integration into fluidic systems, a 3D printed microfluidic device has been constructed around these arrays. Doing so greatly enhances the robustness of the system and additionally allows for the nanotube array to be implemented for a variety of purposes. To broaden their range of application, the devices were designed to allow for multiple isolated inlet flows to the arrays. Utilizing this multiple inlet design permits distinct fluids to enter the array disjointedly. These 3D printed devices were in turn implemented to visualize flow through nanotube arrays. The focus of this report though, is on the design and fabrication of the 3D printed devices. SEM imaging of the completed device shows that the nanotube array remains intact after the printing process and the nanotubes, even those within close proximity to the printing material, remain unobstructed. Printing on top of the nanotube arrays displayed effective adhesion to the surface thus preventing leakage at these interfaces.


MRS Bulletin ◽  
2021 ◽  
Author(s):  
Xinran Zhou ◽  
Pooi See Lee

AbstractThree-dimensional (3D) printing has become an important fabrication method for soft robotics, due to its ability to make complex 3D structures from computer designs in simple steps and multimaterial co-deposition ability. In this article, the application of 3D printing techniques in the fabrication of four types of tactile sensors commonly used in soft robotics, including the piezoresistive tactile sensor, capacitive tactile sensor, piezoelectric tactile sensor, and triboelectric tactile sensor, will be discussed. The 3D printing mechanism, material, and structure for each type of sensor will be introduced, and the perspectives on the future potential of 3D printable tactile sensors will be discussed.


Sign in / Sign up

Export Citation Format

Share Document