Experimental Analysis of the Pressure Field Inside a Vaneless Diffuser From Rotating Stall Inception to Surge

2015 ◽  
Vol 137 (11) ◽  
Author(s):  
Alessandro Bianchini ◽  
Davide Biliotti ◽  
Dante Tommaso Rubino ◽  
Lorenzo Ferrari ◽  
Giovanni Ferrara

An accurate estimation of rotating stall is one of the key points for high-pressure centrifugal compressors, as it is often connected with the onset of detrimental subsynchronous vibrations which can prevent the machine from operating beyond this limit. With particular reference to vaneless diffuser rotating stall, the most common practice in industrial machines is to make use of a limited number of dynamic pressure probes to reconstruct the stall characteristics after an ensemble averaging approach. In this study, a 1:1 model of an industrial compressor stage was tested in a dedicated test rig and equipped with 24 pressure probes properly distributed along the diffuser circumference with the scope of providing a real-time visualization of the spatial pressure distribution within the diffuser. The results allowed the assessment of some important characteristics of the stall cells that were historically supposed based on averaged data, e.g., the cells rigidity. Moreover, the present study confirmed the existence of a stall pattern with two almost axisymmetric lobes. Finally, the transient analysis of both the stall inception (SI) and the surge onset (SO) was carried out, highlighting the flow field evolution in the diffuser under these conditions.

Author(s):  
Alessandro Bianchini ◽  
Davide Biliotti ◽  
Dante Tommaso Rubino ◽  
Lorenzo Ferrari ◽  
Giovanni Ferrara

An accurate estimation of rotating stall is one of the key points for high-pressure centrifugal compressors, as it is often connected with the onset of detrimental subsynchronous vibrations which can prevent the machine from operating beyond this limit. With particular reference to vaneless diffuser rotating stall, the most common practice in industrial machines is to make use of a limited number of dynamic pressure probes to reconstruct the stall characteristics after an ensemble averaging approach. In this study, a 1:1 model of an industrial compressor stage was tested in a dedicated test rig and equipped with 24 pressure probes properly distributed along the diffuser circumference with the scope of providing a real-time visualization of the spatial pressure distribution within the diffuser. The results allowed the assessment of some important characteristics of the stall cells that were historically supposed based on averaged data, e.g. the cells rigidity. Moreover, the present study confirmed the existence of a stall pattern with two almost axisymmetric lobes. Finally, the transient analysis of both the stall inception and the surge onset was carried out, highlighting the flow field evolution in the diffuser under these conditions.


2021 ◽  
Vol 312 ◽  
pp. 11007
Author(s):  
Luca Romani ◽  
Lorenzo Bosi ◽  
Alberto Baroni ◽  
Lorenzo Toni ◽  
Davide Biliotti ◽  
...  

An accurate estimation of rotating stall is one of the key technologies for high-pressure centrifugal compressors. Several techniques have been proposed to detect the stall onset; inter alia, few dynamic pressure probes have been shown to not only properly detect the phenomenon, but also reconstruct the stall characteristics after an ensemble averaging approach. The massive use of this technique in the field is, however, not a common practice yet. In the present study, the use of dynamic pressure probes has been combined with that of an environmental microphone to evaluate the prospects of this latter for a possible stall onset detection. To this end, experimental tests have been carried out in the experimental test rig of the Department of Industrial Engineering (DIEF) of Università degli Studi di Firenze. Results show that the microphone was able to distinguish the onset of rotating stall accurately and promptly, even though – differently from dynamic pressure sensors - it does not provide sufficient information to determine the characteristics of the stall pattern. On this basis, the use of acoustic measurements could find room for automatic detection of rotating stall onset.


Author(s):  
Alessandro Bianchini ◽  
Davide Biliotti ◽  
Marco Giachi ◽  
Elisabetta Belardini ◽  
Libero Tapinassi ◽  
...  

An accurate estimation of rotating stall is one of the key technologies for high-pressure centrifugal compressors, as it is often connected with the onset of detrimental subsynchronous vibrations which can prevent the machine from operating beyond this limit. With particular reference to the vaneless diffuser stall, much research has been directed at investigating the physics of the phenomenon, the influence of the main design parameters and the prediction of the stall inception. Few of them, however, focused attention on the evaluation of the aerodynamic unbalance due to the induced pressure field in the diffuser, which, however, could provide a valuable contribution to both the identification of the actual operating conditions and the enhancement of the compressor operating range by a suitable choice of the control strategy. Although advanced experimental techniques have been successfully applied to the recognition of the stall pattern in a vaneless diffuser, the most suitable solution for a wider application in industrial test-models is based on dynamic pressure measurements by means of a reduced number of probes. Within this context, a procedure to transpose pressure measurements into the spatial pressure distribution was developed and validated on a wide set of industrial test-models. In this work, the main guidelines of the procedure are presented and discussed, with particular reference to signals analysis and manipulation as well as sensors positioning. Moreover, the prospects of using a higher number of sensors is analyzed and compared to standard solutions using a limited probes number.


Author(s):  
Alessandro Bianchini ◽  
Davide Biliotti ◽  
Giovanni Ferrara ◽  
Lorenzo Ferrari ◽  
Elisabetta Belardini ◽  
...  

One of the main challenges of the present industrial research on centrifugal compressors is the need of extending the left margin of the operating range of the machines. As a result, interest is being paid in accurately evaluating the amplitude of the pressure fluctuations caused by rotating stall, which usually occurs prior to surge. The related aerodynamic force acting on the rotor can produce subsynchronous vibrations, which can prevent the machine to further operate, in case their amplitude is too high. These vibrations are often contained thanks to the stiffness of the oil journals. Centrifugal compressors design is, however, going towards alternative journal solutions having lower stiffness levels (e.g. Active Magnetic Bearings or Squeeze Film Dampers), which hence will be more sensitive to this kind of excitation: consequently, a more accurate estimation of the expected forces in presence of dynamic external forces like those connected to an aerodynamically unstable condition is needed to predict the vibration level and the compressor operability in similar conditions. Within this scenario, experimental tests were carried out on an industrial impeller operating at high peripheral Mach number. The dedicated test rig was equipped with several dynamic pressure probes that were inserted in the gas flow path; moreover, the rotor vibrations were constantly monitored with typical vibration probes located near the journal bearings. The pressure field induced by the rotating stall in the vaneless diffuser was reconstructed by means of an ensemble average approach, defining the amplitude and frequency of the external force acting on the impeller. The calculated force value was then included in the rotordynamic model of the test rig: the predicted vibrations on the bearings were compared with the measurements, showing satisfactory agreement. Finally, the prospects of the proposed approach are discussed by investigating the response of a real machine in high-pressure functioning when different choices of journal bearings are made.


Author(s):  
Alessandro Bianchini ◽  
Davide Biliotti ◽  
Giovanni Ferrara ◽  
Lorenzo Ferrari ◽  
Elisabetta Belardini ◽  
...  

One of the main challenges of the present industrial research on centrifugal compressors is the need for extending the left margin of the operating range of the machines. As a result, interest is being paid to accurately evaluating the amplitude of the pressure fluctuations caused by rotating stall, which usually occurs prior to surge. The related aerodynamic force acting on the rotor can produce subsynchronous vibrations, which can prevent the machine's further operation, in case their amplitude is too high. These vibrations are often contained due to the stiffness of the oil journals. Centrifugal compressor design is, however, going towards alternative journal solutions having lower stiffness levels (e.g., active magnetic bearings or squeeze film dampers), which will be more sensitive to this kind of excitation: consequently, a more accurate estimation of the expected forces in the presence of dynamic external forces such as those connected to an aerodynamically unstable condition is needed to predict the vibration level and the compressor operability in similar conditions. Within this scenario, experimental tests were carried out on industrial impellers operating at high peripheral Mach numbers. The dedicated test rig was equipped with several dynamic pressure probes that were inserted in the gas flow path; moreover, the rotor vibrations were constantly monitored with typical vibration probes located near the journal bearings. The pressure field induced by the rotating stall in the vaneless diffuser was reconstructed by means of an ensemble average approach, thus defining the amplitude and frequency of the external force acting on the impeller. The calculated force value was then included in the rotordynamic model of the test rig: the predicted vibrations on the bearings were compared with the measurements, showing satisfactory agreement. Moreover, the procedure was applied to two real multistage compressors, showing notable prediction capabilities in the description of rotating stall effects on the machine rotordynamics. Finally, the prospects of the proposed approach are discussed by investigating the response of a real machine in high-pressure functioning when different choices of journal bearings are made.


Author(s):  
E. A. Carnevale ◽  
G. Ferrara ◽  
L. Ferrari ◽  
L. Baldassarre

Vaneless diffuser rotating stall is a major problem for centrifugal compressors since it is a limit to their working range. In the literature some good correlations for predicting stall inception can be found but they do not adequately cover the case of the last stage configuration, especially for very low blade-outlet-width-to-impeller-radius-ratio impellers typically used in high-pressure applications. Extensive research has been performed to define diffuser stall limits for this family of stages: three impellers characterized by different blade-outlet-width-to-impeller-radius-ratios have been tested with different diffuser configurations (different pinch shapes, diffuser widths and diffusion ratios). The basic configuration comprises a 1:1 geometrical scale stage with a return channel upstream, a 2D impeller with a vaneless diffuser and a volute with a constant cross sectional area downstream. Several diffuser types with different widths and diffusion ratios were tested. Detailed experimental results have been reported in previous works [1, 2, 3 and 4]. In this paper experimental data are reviewed in order to analyze impeller influence on diffuser stability and to develop some summarizing consideration on stall behavior of vaneless diffuser for impeller with low blade-outlet-width-to-impeller-radius-ratio.


2004 ◽  
Vol 10 (6) ◽  
pp. 433-442 ◽  
Author(s):  
Giovanni Ferrara ◽  
Lorenzo Ferrari ◽  
Leonardo Baldassarre

The rotating stall is a key problem for achieving a good working range of a centrifugal compressor and a detailed understanding of the phenomenon is very important to anticipate and avoid it. Many experimental tests have been planned by the authors to investigate the influence on stall behavior of different geometrical configurations. A stage with a backward channel upstream, a 2-D impeller with a vaneless diffuser and a constant cross-section volute downstream, constitute the basic configuration. Several diffuser types with different widths, pinch shapes, and diffusion ratios were tested. The stage was instrumented with many fast response dynamic pressure sensors so as to characterize inception and evolution of the rotating stall. This kind of analysis was carried out both in time and in frequency domains. The methodology used and the results on phenomenon evolution will be presented and discussed in this article.


Author(s):  
Alessandro Bianchini ◽  
Giulia Andreini ◽  
Giovanni Ferrara ◽  
Lorenzo Ferrari ◽  
Dante Tommaso Rubino

Recent studies showed that a prompt detection of the stall inception, connected with a specific model to predict its associated aerodynamic force, could provide room for an extension of the left margin of the operating curve of high-pressure centrifugal compressors. In industrial machines working in the field, however, robust procedures to detect and identify the phenomenon are still missing, i.e. the operating curve is almost ever cut preliminary by the manufacturer by a proper safety margin; moreover, no agreement is found in the literature about a well-defined threshold to define the onset of the stall. In particular, in some cases the intensity of the arising subsynchronous frequency is compared to the revolution frequency, while in many other ones it is compared to the blade passage frequency. A large experience in experimental stall analyses collected by the authors revealed that in some cases unexpected spikes could make this direct comparison not reliable for a robust automatic detection. To this end, a new criterion was developed based on an integral analysis of the area subtended to the entire subsynchronous spectrum of the dynamic pressure signal of probes positioned just outside the impeller exit. A dimensionless parameter was then defined to account for the spectrum area increase in proximity to stall inception. This new parameter enabled the definition of a reference threshold to highlight the arising of stall conditions, whose validity and increased robustness was here verified based on a set of experimental analyses of different types of full-stage test cases of industrial centrifugal compressors at the test rig.


Author(s):  
Alessandro Bianchini ◽  
Giulia Andreini ◽  
Lorenzo Ferrari ◽  
Dante Tommaso Rubino ◽  
Giovanni Ferrara

Recent studies showed that a prompt detection of the stall inception, connected with a specific model to predict its associated aerodynamic force, could provide room for an extension of the left margin of the operating curve of high-pressure centrifugal compressors. In industrial machines working in the field, however, robust procedures to detect and identify the phenomenon are still missing, i.e., the operating curve is almost ever cut preliminarily by the manufacturer by a proper safety margin; moreover, no agreement is found in the literature about a well-defined threshold to define the onset of the stall. In particular, in some cases, the intensity of the arising subsynchronous frequency is compared to the revolution frequency, while in many other ones it is compared to the blade passage frequency. A large experience in experimental stall analyses collected by the authors revealed that in some cases unexpected spikes could make this direct comparison not reliable for a robust automatic detection. To this end, a new criterion was developed based on an integral analysis of the area subtended to the entire subsynchronous spectrum of the dynamic pressure signal of probes positioned just outside the impeller exit. A dimensionless parameter was then defined to account for the spectrum area increase in proximity to stall inception. This new parameter enabled the definition of a reference threshold to highlight the arising of stall conditions, whose validity and increased robustness was here verified based on a set of experimental analyses of different types of full-stage test cases of industrial centrifugal compressors at the test rig.


Sign in / Sign up

Export Citation Format

Share Document