Experimental Results and Computational Fluid Dynamics Simulations of Labyrinth and Pocket Damper Seals for Wet Gas Compression

Author(s):  
Giuseppe Vannini ◽  
Matteo Bertoneri ◽  
Kenny Krogh Nielsen ◽  
Piero Iudiciani ◽  
Robert Stronach

The most recent development in centrifugal compressor technology is toward wet gas operating conditions. This means the centrifugal compressor has to manage a liquid phase which is varying between 0% and 3% liquid volume fraction (LVF) according to the most widely agreed definition. The centrifugal compressor operation is challenged by the liquid presence with respect to all the main aspects (e.g., thermodynamics, material selection, thrust load) and especially from a rotordynamic viewpoint. The main test results of a centrifugal compressor tested in a special wet gas loop (Bertoneri et al., 2014, “Development of Test Stand for Measuring Aerodynamic, Erosion, and Rotordynamic Performance of a Centrifugal Compressor Under Wet Gas Conditions,” ASME Paper No. GT2014-25349) show that wet gas compression (without an upstream separation) is a viable technology. In wet gas conditions, the rotordynamic behavior could be impacted by the liquid presence both from a critical speed viewpoint and stability-wise. Moreover, the major rotordynamic results from the previously mentioned test campaign (Vannini et al., 2014, “Centrifugal Compressor Rotordynamics in Wet Gas Conditions,” 43rd Turbomachinery Symposium, Houston) show that both vibrations when crossing the rotor first critical speed and stability (tested through a magnetic exciter) are not critically affected by the liquid phase. Additionally, it was found that the liquid may affect the vibration behavior by partially flooding the internal annular seals and causing a sort of forced excitation phenomenon. In order to better understand the wet gas test outcomes, the authors performed an extensive computational fluid dynamics (CFD) analysis simulating all the different types of balance piston annular seals used (namely, a tooth on stator (TOS) labyrinth seal and a pocket damper seal (PDS)). They were simulated in both steady-state and transient conditions and finally compared in terms of liquid management capability. CFD simulation after a proper tuning (especially in terms of LVF level) showed interesting results which are mostly consistent with the experimental outcome. The results also provide a physical explanation of the behavior of both seals, which was observed during testing.

Author(s):  
Giuseppe Vannini ◽  
Matteo Bertoneri ◽  
Kenny Krogh Nielsen ◽  
Piero Iudiciani ◽  
Robert Stronach

The most recent development in centrifugal compressor technology is towards wet gas operating conditions. This means the centrifugal compressor has to manage a liquid phase which is varying between 0 to 3% Liquid Volume Fraction (LVF) according to the most widely agreed definition. The centrifugal compressor operation is challenged by the liquid presence with respect to all the main aspects (e.g. thermodynamics, material selection, thrust load) and especially from a rotordynamic viewpoint. The main test results of a centrifugal compressor tested in a special wet gas loop [1] show that wet gas compression (without an upstream separation) is a viable technology. In wet gas conditions the rotordynamic behavior could be impacted by the liquid presence both from a critical speed viewpoint and stability wise. Moreover the major rotordynamic results from the previous mentioned test campaign [2] show that both vibrations when crossing the rotor first critical speed and stability (tested through a magnetic exciter) are not critically affected by the liquid phase. Additionally it was found that the liquid may affect the vibration behavior by partially flooding the internal annular seals and causing a sort of forced excitation phenomenon. In order to better understand the wet gas test outcomes, the authors performed an extensive CFD analysis simulating all the different types of balance piston annular seals used (namely a Tooth on Stator Labyrinth Seal and a Pocket Damper Seal). They were simulated in both steady state and transient conditions and finally compared in terms of liquid management capability. CFD simulation after a proper tuning (especially in terms of LVF level) showed interesting results which are mostly consistent with the experimental outcome. The results also provide a physical explanation of the behavior of both seals, which was observed during testing.


Author(s):  
C. Xu ◽  
R. S. Amano

Centrifugal compressors have widely applications in industrial gas compression processes. Limitations of installation and compressor package always request to modify the compressor geometry to fit certain constrains. Very often, the modifications of the scroll were performed to meet the space constrains. To meet the installation and package requirements, we always modify the scroll and discharge pipe of the compressors. In this study, an original designed scroll and a modified scroll were analyzed by using the Computational Fluid Dynamics (CFD). The study is focused on the performance impacts of the scroll local deformation due to installation constrains. The CFD showed favorable agreements with experiments for original scroll. The detailed flow characters and performance impacts were discussed and results showed that current modifications of the scroll did not have significant impacts to the compressor performance. The study results can be used as a basic guidance for a compressor manufactures.


Author(s):  
Sarah Simons ◽  
Ryan Cater ◽  
Klaus Brun ◽  
Grant Musgrove ◽  
Rainer Kurz

Significant work has been performed to qualify and quantify the effects of operating with wet gas in a centrifugal compressor system [1, 2]. Of particular interest is the sharp decrease in the isentropic efficiency of the machine when operating with process gas containing various liquid volume fractions. However, it is unknown how much of the performance losses are due to aerodynamic effects, such as blade profile and flow separation losses, rather than the basic thermodynamic effects of compressing a multiphase gas that has a higher density, integral wet-cooling, and contains small amounts of high-density droplets. Previous studies showed that the overall efficiency losses exceeded those expected from purely thermodynamic effects so aerodynamic effects have been principally blamed for the lower efficiency. However, no test data exists in the public domain that quantifies these losses and it is experimentally difficult to perform this type of testing in centrifugal compressor. Therefore, a series of tests was performed on a reciprocating compressor with power and efficiency recorded through dynamic pressure measurements obtained inside the compression cylinder, torque measured on the shaft, and enthalpy rise measurements obtained outside the cylinders. Using this approach one can eliminate (or differentiate) the aerodynamic effects of wet gas compression, such as valve losses, thus allowing the direct determination of the thermodynamic losses of wet gas compression. Specifically, when there is multi-phase flow entering the machinery, there is the thermodynamic effect of how a mixture of water and air behaves when being compressed [from a process perspective] and the aerodynamic effect of moisture encountering the blades of a centrifugal compressor [performance loss] or the valve passages of a reciprocating compressor [pressure loss]. Directly instrumenting the internals of a reciprocating compressor cylinder allows the evaluation of the thermodynamic performance of multi-phase compression separate from any aerodynamic penalties. This paper describes the tests performed in a reciprocating compressor open test loop operating with varying amounts of liquid volume fractions (LVFs) of water in the process gas (air). The data was reduced using Pressure-Volume card measurements inside and outside the cylinder, enthalpy rise, as well as torque to determine the impact of volume fraction on compression power and efficiency. Additionally, the valve losses, system efficiencies, and peak compression “spike” were evaluated in relations to the LVFs.


Processes ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 314 ◽  
Author(s):  
Son Ich Ngo ◽  
Young-Il Lim ◽  
Soo-Chan Kim

In this work, a three-dimensional volume-of-fluid computational fluid dynamics (VOF-CFD) model was developed for a coagulation bath of the dry-jet wet spinning (DJWS) process for the production of polyacrylonitrile (PAN)-based carbon fiber under long-term operating conditions. The PAN-fiber was assumed to be a deformable porous zone with variations in moving speed, porosity, and permeability. The Froude number, interpreted as the wave-making resistance on the liquid surface, was analyzed according to the PAN-fiber wind-up speed ( v P A N ). The effect of the PAN speed on the reflection and wake flow formed by drag between a moving object and fluid is presented. A method for tracking the wave amplitude with time is proposed based on the iso-surface of the liquid volume fraction of 0.95. The wave signal for 30 min was divided into the initial and resonance states that were distinguished at 8 min. The maximum wave amplitude was less than 0.5 mm around the PAN-fiber inlet nozzle for v P A N = 0.1–0.5 m/s in the resonance state. The VOF-CFD model is useful in determining the maximum v P A N under an allowable air gap of the DJWS process.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
C. I. Papadopoulos ◽  
L. Kaiktsis ◽  
M. Fillon

The paper presents a detailed computational study of flow patterns and performance indices in a dimpled parallel thrust bearing. The bearing consists of eight pads; the stator surface of each pad is partially textured with rectangular dimples, aiming at maximizing the load carrying capacity. The bearing tribological performance is characterized by means of computational fluid dynamics (CFD) simulations, based on the numerical solution of the Navier–Stokes and energy equations for incompressible flow. Realistic boundary conditions are implemented. The effects of operating conditions and texture design are studied for the case of isothermal flow. First, for a reference texture pattern, the effects of varying operating conditions, in particular minimum film thickness (thrust load), rotational speed and feeding oil pressure are investigated. Next, the effects of varying texture geometry characteristics, in particular texture zone circumferential/radial extent, dimple depth, and texture density on the bearing performance indices (load carrying capacity, friction torque, and friction coefficient) are studied, for a representative operating point. For the reference texture design, the effects of varying operating conditions are further investigated, by also taking into account thermal effects. In particular, adiabatic conditions and conjugate heat transfer at the bearing pad are considered. The results of the present study indicate that parallel thrust bearings textured by proper rectangular dimples are characterized by substantial load carrying capacity levels. Thermal effects may significantly reduce load capacity, especially in the range of high speeds and high loads. Based on the present results, favorable texture designs can be assessed.


2017 ◽  
Vol 140 (3) ◽  
Author(s):  
Farzam Mortazavi ◽  
Alan Palazzolo

Circumferentially grooved, annular liquid seals typically exhibit good whirl frequency ratios (WFRs) and leakage reduction, yet their low effective damping can lead to instability. The current study investigates the rotordynamic behavior of a 15-step groove-on-rotor annular liquid seal by means of computational fluid dynamics (CFD), in contrast to the previous studies which focused on a groove-on-stator geometry. The seal dimensions and working conditions have been selected based on experiments of Moreland and Childs (2016, “Influence of Pre-Swirl and Eccentricity in Smooth Stator/Grooved Rotor Liquid Annular Seals, Measured Static and Rotordynamic Characteristics,” M.Sc. thesis, Texas A&M University, College Station, TX). The frequency ratios as high as four have been studied. Implementation of pressure-pressure inlet and outlet conditions make the need for loss coefficients at the entrance and exit of the seal redundant. A computationally efficient quasi-steady approach is used to obtain impedance curves as functions of the excitation frequency. The effectiveness of steady-state CFD approach is validated by comparison with the experimental results of Moreland and Childs. Results show good agreement in terms of leakage, preswirl ratio (PSR), and rotordynamic coefficients. It was found that PSR will be about 0.3–0.4 at the entrance of the seal in the case of radial injection, and outlet swirl ratio (OSR) always converges to values near 0.5 for current seal and operational conditions. The negative value of direct stiffness coefficients, large cross-coupled stiffness coefficients, and small direct damping coefficients explains the destabilizing nature of these seals. Finally, the influence of surface roughness on leakage, PSR, OSR, and stiffness coefficients is discussed.


Author(s):  
Riccardo Da Soghe ◽  
Cosimo Bianchini ◽  
Antonio Andreini ◽  
Lorenzo Mazzei ◽  
Giovanni Riccio ◽  
...  

Combustor liner of present gas turbine engines is subjected to high thermal loads as it surrounds high temperature combustion reactants and is hence facing the related radiative load. This generally produces high thermal stress levels on the liner, strongly limiting its life expectations and making it one of the most critical components of the entire engine. The reliable prediction of such thermal loads is hence a crucial aspect to increase the flame tube life span and to ensure safe operations. The present study aims at investigating the aerothermal behavior of a GE Dry Low NOx (DLN1) class flame tube and in particular at evaluating working metal temperatures of the liner in relation to the flow and heat transfer state inside and outside the combustion chamber. Three different operating conditions have been accounted for (i.e., lean–lean partial load, premixed full load, and primary load) to determine the amount of heat transfer from the gas to the liner by means of computational fluid dynamics (CFD). The numerical predictions have been compared to experimental measurements of metal temperature showing a good agreement between CFD and experiments.


Author(s):  
Brian K. Weaver ◽  
Gen Fu ◽  
Andres F. Clarens ◽  
Alexandrina Untaroiu

Gas-expanded lubricants (GELs), tunable mixtures of synthetic oil and dissolved carbon dioxide, have been previously shown to potentially increase bearing efficiency, rotordynamic control, and long-term reliability in flooded journal bearings by controlling the properties of the lubricant in real time. Previous experimental work has established the properties of these mixtures and multiple numerical studies have predicted that GELs stand to increase the performance of flooded bearings by reducing bearing power losses and operating temperatures while also providing control over bearing stiffness and damping properties. However, to date all previous analytical studies have utilized Reynolds equation-based approaches while assuming a single-phase mixture under high-ambient pressure conditions. The potential implications of multi-phase behavior could be significant to bearing performance, therefore a more detailed study of alternative operating conditions that may include multi-phase behavior is necessary to better understanding the full potential of GELs and their effects on bearing performance. In this work, the performance of GELs in a fixed geometry journal bearing were evaluated to examine the effects of these lubricants on the fluid and bearing dynamics of the system under varying operating conditions. The bearing considered for this study was a hybrid hydrodynamic-hydrostatic bearing to allow for the study of various lubricant supply and operating conditions. A computational fluid dynamics (CFD)-based approach allowed for a detailed evaluation of the lubricant injection pathway, the flow of fluid throughout the bearing geometry, thermal behavior, and the collection of the lubricant as it exits the bearing. This also allowed for the study of the effects of the lubricant behavior on overall bearing performance.


2020 ◽  
Vol 220 ◽  
pp. 01082
Author(s):  
Yuri Kozhukhov ◽  
Serafima Tatchenkova ◽  
Sergey Kartashov ◽  
Vyacheslav Ivanov ◽  
Evgeniy Nikitin

This paper provides the results of the study of a spatial flow in a low-flow stage of a SVD-22 centrifugal compressor of computational fluid dynamics methods using the Ansys CFX 14.0 software package. Low flow stages are used as the last stages of multistage centrifugal compressors. Such multistage compressors are widely used in boosting compressor stations for natural gas, in chemical industries. The flow features in low-flow stages require independent research. This is due to the fact that the developed techniques for designing centrifugal compressor stages are created for medium-flow and high-flow stages and do not apply to low-flow stages. Generally at manufacturing new centrifugal compressors, it is impossible to make a control measurement of the parameters of the working process inside the flow path elements. Computational fluid dynamics methods are widely used to overcome this difficulties. However verification and validation of CFD methods are necessary for accurate modeling of the workflow. All calculations were conducted on one of the SPbPU clusters. Parameters of one cluster node: AMD Opteron 280 2 cores, 8GB RAM. The calculations were conducted using 4 nodes (HP MPI Distributed Parallel startup type) with their full load by parallelizing processes on each node.


Sign in / Sign up

Export Citation Format

Share Document