Determination of Pressure Profile During Closed-Vessel Test Through Computational Fluid Dynamics Simulation

Author(s):  
Ahmed Bougamra ◽  
Huilin Lu

Two-phase flow modeling of solid propellants has great potential for simulating and predicting the ballistic parameters in closed-vessel tests as well as in guns. This paper presents a numerical model describing the combustion of a solid propellant in a closed chamber and takes into account what happens in such two-phase, unsteady, reactive-flow systems. The governing equations were derived in the form of coupled, nonlinear axisymmetric partial differential equations. The governing equations with customized parameters were implemented into ansys fluent 14.5. The presented solutions predict the pressure profile inside the closed chamber. The results show that the present code adequately predicts the pressure–time history. The numerical results are in agreement with the experiment. Some discussions are given regarding the effect of the grain shape and the sensitivity of these predictions to the initial pressure of the solid propellant bed. The study demonstrated the capability of using the present model implemented into Fluent, to simulate the combustion of solid propellants in a closed vessel and, eventually, the interior ballistic process in guns.

2016 ◽  
Vol 11 (1) ◽  
pp. 60-65 ◽  
Author(s):  
R.Kh. Bolotnova ◽  
E.F. Gainullina

The spherical explosion propagation process in aqueous foam with the initial water volume content α10=0.0083 corresponding to the experimental conditions is analyzed numerically. The solution method is based on the one-dimensional two-temperature spherically symmetric model for two-phase gas-liquid mixture. The numerical simulation is built by the shock capturing method and movable Lagrangian grids. The amplitude and the width of the initial pressure pulse are found from the amount of experimental explosive energy. The numerical modeling results are compared to the real experiment. It’s shown, that the foam compression in the shock wave leads to the significant decrease in velocity and in amplitude of the shock wave.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mahmoud Haghighi ◽  
Hossein Golestanian ◽  
Farshid Aghadavoudi

Abstract In this paper, the effects of filler content and the use of hybrid nanofillers on agglomeration and nanocomposite mechanical properties such as elastic moduli, ultimate strength and elongation to failure are investigated experimentally. In addition, thermoset epoxy-based two-phase and hybrid nanocomposites are simulated using multiscale modeling techniques. First, molecular dynamics simulation is carried out at nanoscale considering the interphase. Next, finite element method and micromechanical modeling are used for micro and macro scale modeling of nanocomposites. Nanocomposite samples containing carbon nanotubes, graphene nanoplatelets, and hybrid nanofillers with different filler contents are prepared and are tested. Also, field emission scanning electron microscopy is used to take micrographs from samples’ fracture surfaces. The results indicate that in two-phase nanocomposites, elastic modulus and ultimate strength increase while nanocomposite elongation to failure decreases with reinforcement weight fraction. In addition, nanofiller agglomeration occurred at high nanofiller contents especially higher than 0.75 wt% in the two-phase nanocomposites. Nanofiller agglomeration was observed to be much lower in the hybrid nanocomposite samples. Therefore, using hybrid nanofillers delays/prevents agglomeration and improves mechanical properties of nanocomposite at the same total filler content.


2011 ◽  
Vol 133 (9) ◽  
Author(s):  
Shun Ching Lee ◽  
Tzu-Min Chen

Abstract The behavior of cryogenic nitrogen in a room-temperature evaporator six meters long is analyzed. Trapezoid fins are employed to enhance the heat flux supplied by the environment. The steady-state governing equations specified by the mixed parameters are derived from the conservations of momentum and energy. The initial value problem is solved by space integration. The fixed ambient conditions are confirmed by way of the meltback effect. An integrated model is utilized to analyze the convective effect of two-phase flow, which dominates the evaporation behavior. Another integrated model is employed to determine the total heat flux from the environment to the wet surface of the evaporator. The foundation of the formation of an ice layer surrounding the evaporator is presented. If the fin height is shorter than 0.5 m, the whole evaporator is surrounded by ice layer. If the fin height is longer than 0.5 m, the total pressure drop of nitrogen in the tube is negligible. The outlet temperature is always within the range between −12 °C and 16 °C for the evaporator with the fin height of 1.0 m. For the evaporator with dry surface, the nitrogen has the outlet temperature less than the ambient temperature at least by 5 °C.


2018 ◽  
Vol 778 ◽  
pp. 268-274
Author(s):  
Amir Mukhtar ◽  
Habib Nasir ◽  
Hizba Waheed

The Closed vessel (CV) is an equipment used to study the ballistic parameters by recording burning time history, pressure buildup during the process and vivacity of the propellants. It is an apparatus which consists of strong pressure vessel, piezo-electric pressure transducers, sensors and dedicated software. To save time and resources this method is employed instead of dynamic firing while doing research and development of propellants. A measured amount of propellant charge is loaded in the vessel and fired remotely. Ignition is provided by the filament which ignites the black powder charge. In this study, we have used Closed Vessel Tests (CVT) for the first time for recording the ballistic parameters of slow burning composite rocket propellant. We developed a set of composite solid propellant samples containing a mixture of bimodal Ammonium Perchlorate (AP) as an oxidizer, Hydroxy-terminated Polybutadiene (HTPB) as a binder as well as fuel, Dioctyl Sebacate (DOS) as plasticizer, 1-(2-methyl) Aziridinyl Phosphine Oxide (MAPO) as bonding agent and Toluene Diisocyanate (TDI) as curator. Samples were developed by changing the solid loading percentage of bimodal AP particles. By increasing the percentage of AP, the oxidizer-fuel ratio (O/F) increases which effects the ballistic parameters. It is observed that maximum pressure and vivacity increases with increase in solid filler in the propellants. As quantity of AP increases, rate of rise of pressure also increases. CVT firing of each sample was done three times to obtain average burning time and pressure buildup history to evaluate the effect of oxidizer loadings on ballistic parameters of the composite propellant.


Author(s):  
V.A. Poryazov ◽  
◽  
K.M. Moiseeva ◽  
A.Yu. Krainov ◽  
◽  
...  

A problem of combustion of the composite solid propellants containing various powders of metals and non-metals is relevant in terms of studying the effect of various compositions of powders on the linear rate of propellant combustion. One of the lines of research is to determine the effect of the addition of a boron powder on the burning rate of a composite solid propellant. This work presents the results of numerical simulation of combustion of the composite solid propellant containing bidispersed boron powder. Physical and mathematical formulation of the problem is based on the approaches of the mechanics of two-phase reactive media. To determine the linear burning rate, the Hermance model of combustion of composite solid propellants is used, based on the assumption that the burning rate is determined by mass fluxes of the components outgoing from the propellant surface. The solution is performed numerically using the breakdown of an arbitrary discontinuity algorithm. The dependences of the linear burning rate of the composite solid propellant on the dispersion of the boron particles and gas pressure above the propellant surface are obtained. It is shown that the burning rate of the composite solid propellant with bidispersed boron powder changes in contrast to that of the composite solid propellant with monodispersed powder. This fact proves that the powder dispersion should be taken into account when solving the problems of combustion of the composite solid propellants containing reactive particles.


2020 ◽  
Vol 45 (5) ◽  
pp. 741-750 ◽  
Author(s):  
Balesh Ropia ◽  
Himanshu K. Shekhar ◽  
Dinesh G. Thakur

Author(s):  
Yu Xu ◽  
Yulin Wu ◽  
Shuhong Liu ◽  
Yong Li

In this paper, the two-fluid model was adopted to analyze the cavitating flow. Based on Boltzmann equation, governing equations for two-phase cavitating flow were obtained by using the microscopic kinetic theory, in which the equation terms for mass and momentum transportations can be obtained directly. Then the RNG k–ε–kg turbulence model, that is RNG k–ε model for the liquid phase and kg model for the cavity phase, was used to close the Reynolds time-averaged equations. According to the governing equations above, the simulation of the two-phase cavitating flow through a closed pump sump has been carried out. The calculated results have been compared with a PIV experiment. Good agreement exhibited.


Author(s):  
Fei Song ◽  
Ke Li ◽  
Sepand Ossia

Abstract To enable real-time monitoring of the physical condition of the drilling equipment such as drill collars, a methodology for efficiently predicting the fatigue life of ports subjected to variable-amplitude cyclic bending or torsional loads is needed. In this paper, such a method is reported, which involves several steps. Firstly, elastic finite element analysis (FEA) of a collar port was performed to determine the elastic stress states with unit loads. Secondly, the unit load-based linear elastic solutions with the loading history were superimposed to produce a time history of the stress tensor. Thirdly, the previously established pseudo-elastic stress states were transformed into the true elastoplastic stress and strain states with a cyclic plasticity model and a notch correction rule. Finally, the cumulative fatigue damage was computed with the rainflow counting algorithm and a damage accumulation rule. The resulting fatigue life predictions for the ports were found to agree favorably with the experimental measurements from full-scale fatigue tests of port-containing collar samples with variable-amplitude loads. This newly developed method can be used to predict the remaining useful life of a port in real time with the loads resulting from downhole measurements or a drill string dynamics simulation code.


Sign in / Sign up

Export Citation Format

Share Document