Voltage Response of Primary Resonance of Electrostatically Actuated MEMS Clamped Circular Plate Resonators

Author(s):  
Dumitru I. Caruntu ◽  
Reynaldo Oyervides

This paper investigates the voltage–amplitude response of soft alternating current (AC) electrostatically actuated micro-electro-mechanical system (MEMS) clamped circular plates for sensing applications. The case of soft AC voltage of frequency near half natural frequency of the plate is considered. Soft AC produces small to very small amplitudes away from resonance zones. Nearness to half natural frequency results in primary resonance of the system, which is investigated using the method of multiple scales (MMS) and numerical simulations using reduced order model (ROM) of seven terms (modes of vibration). The system is assumed to be weakly nonlinear. Pull-in instability of the voltage–amplitude response and the effects of detuning frequency and damping on the response are reported.

Author(s):  
Dumitru I. Caruntu ◽  
Reynaldo Oyervides

This paper investigates the voltage-amplitude response of soft AC electrostatically actuated M/NEMS clamped circular plates. AC frequency is near half natural frequency of the plate. This results in primary resonance. The system is analytically modeled using the Method of Multiple Scales (MMS). The system is assumed weakly nonlinear. The behavior of the system including pull-in instability as the AC voltage is swept up and down while the excitation frequency is constant is reported. The effects of detuning frequency, damping, Casimir force, and van der Waals force are reported as well.


Author(s):  
Dumitru I. Caruntu ◽  
Reynaldo Oyervides ◽  
Valeria Garcia

This paper deals with electrostatically actuated MEMS plates. The model consists of a flexible MEMS plate above a parallel ground plate. An AC voltage of frequency near natural frequency of the plate provides the electrostatic force that actuates the flexible MEMS plate. This leads to parametric resonance. The effect of Casimir and/or van der Waals forces on the voltage-amplitude response of the plate is investigated.


Author(s):  
Dumitru I. Caruntu ◽  
Christian Reyes

This paper deals with electrostatically actuated microelectromechanical (MEMS) cantilever resonators under soft AC double actuation. The cantilever is between two parallel ground plates. The two AC frequencies are one near half natural frequency, and the other near natural frequency. There is a phase difference between the two voltages. The system undergoes a simultaneous resonance. The voltage-amplitude response is investigated. The effects of the second voltage, phase difference between voltages, and frequency on the response are reported. The method of multiple scales is used in this paper.


Author(s):  
Dumitru I. Caruntu ◽  
Reynaldo Oyervides

This paper utilizes Reduced Order Model (ROM) method to investigate the voltage-amplitude response of electrostatically actuated M/NEMS clamped circular plates. Soft AC voltage at frequency near half natural frequency of the plate is used. This results in primary resonance of the system. The effects of nonlinearities of the system including pull-in instability on the voltage-amplitude response are investigated. Namely, the effects of detuning frequency, damping, Casimir force, and van der Waals force on the voltage response of clamped circular plates are reported. Casimir and van der Waals forces are found to have significant effects on the response of clamped circular plates and must be considered to accurately model and predict the behavior of the system.


Author(s):  
Dumitru I. Caruntu ◽  
Julio Beatriz ◽  
Jonathan Perez

Abstract This paper deals with voltage-amplitude response of superharmonic resonance of second order of electrostatically actuated clamped MEMS circular plates. A flexible MEMS circular plate, parallel to a ground plate, and under AC voltage, constitute the structure under consideration. Hard excitations due to voltage large enough and AC frequency near one fourth of the natural frequency of the MEMS plate resonator lead the MEMS plate into superharmonic resonance of second order. These excitations produce resonance away from the primary resonance zone. No DC component is included in the voltage applied. The equation of motion of the MEMS plate is solved using two modes of vibration reduced order model (ROM), that is then solved through a continuation and bifurcation analysis using the software package AUTO 07P. This predicts the voltage-amplitude response of the electrostatically actuated MEMS plate. Also, a numerical integration of the system of differential equations using Matlab is used to produce time responses of the system. A typical MEMS silicon circular plate resonator is used to conduct numerical simulations. For this resonator the quantum dynamics effects such as Casimir effect are considered. Also, the Method of Multiple Scales (MMS) is used in this work. All methods show agreement for dimensionless voltage values less than 6. The amplitude increases with the increase of voltage, except around the dimensionless voltage value of 4, where the resonance shows two saddle-node bifurcations and a peak amplitude significantly larger than the amplitudes before and after the dimensionless voltage of 4. A light softening effect is present. The pull-in dimensionless voltage is found to be around 16. The effects of damping and frequency on the voltage response are reported. As the damping increases, the peak amplitude decreases. while the pull-in voltage is not affected. As the frequency increases, the peak amplitude is shifted to lower values and lower voltage values. However, the pull-in voltage and the behavior for large voltage values are not affected.


Author(s):  
Dumitru I. Caruntu ◽  
Martin A. Botello ◽  
Christian A. Reyes ◽  
Julio S. Beatriz

This paper investigates the voltage–amplitude response of superharmonic resonance of second order (order two) of alternating current (AC) electrostatically actuated microelectromechanical system (MEMS) cantilever resonators. The resonators consist of a cantilever parallel to a ground plate and under voltage that produces hard excitations. AC frequency is near one-fourth of the natural frequency of the cantilever. The electrostatic force includes fringe effect. Two kinds of models, namely reduced-order models (ROMs), and boundary value problem (BVP) model, are developed. Methods used to solve these models are (1) method of multiple scales (MMS) for ROM using one mode of vibration, (2) continuation and bifurcation analysis for ROMs with several modes of vibration, (3) numerical integration for ROM with several modes of vibration, and (4) numerical integration for BVP model. The voltage–amplitude response shows a softening effect and three saddle-node bifurcation points. The first two bifurcation points occur at low voltage and amplitudes of 0.2 and 0.56 of the gap. The third bifurcation point occurs at higher voltage, called pull-in voltage, and amplitude of 0.44 of the gap. Pull-in occurs, (1) for voltage larger than the pull-in voltage regardless of the initial amplitude and (2) for voltage values lower than the pull-in voltage and large initial amplitudes. Pull-in does not occur at relatively small voltages and small initial amplitudes. First two bifurcation points vanish as damping increases. All bifurcation points are shifted to lower voltages as fringe increases. Pull-in voltage is not affected by the damping or detuning frequency.


Author(s):  
Dumitru I. Caruntu ◽  
Ezequiel Juarez

Abstract This paper deals with the frequency-amplitude response of primary resonance of electrostatically actuated Double-Walled Carbon Nanotubes (DWCNT) and Single-Walled Carbon Nanotubes (SWCNT) cantilever resonators. Their responses are compared. Both the DWCNT and SWCNT are modeled as Euler-Bernoulli cantilever beams. Electrostatic and damping forces are applied on both types of resonators. An AC voltage provides a soft electrostatic actuation. For the DWCNT, intertube van der Waals forces are present between the carbon nanotubes, coupling the deflections of the tubes and acting as a nonlinear spring between the two carbon nanotubes. Electrostatic (for SWCNT and DWCNT) and intertube van der Waals (for DWCNT) forces are nonlinear. Both resonators undergo nonlinear parametric excitation. The Method of Multiple Scales (MMS) is used to investigate the systems under soft excitations and weak nonlinearities. A 2-Term Reduced-Order-Model (ROM) is numerically solved for stability analysis using AUTO-07P, a continuation and bifurcation software. The coaxial vibrations of DWCNT are considered in this work, in order to draw comparisons between DWCNT and SWCNT. Effects of damping and voltage of the frequency-amplitude response are reported.


Author(s):  
Dumitru I. Caruntu ◽  
Cone S. Salinas Trevino

This paper deals with electrostatically actuated Carbon NanoTubes (CNT) cantilevers for bio-sensing applications. There are three kinds of forces acting on the CNT cantilever: electrostatic, elastostatic, and van der Waals. The van der Waals forces are significant for values of 50 nm or lower of the gap between the CNT and the ground plate. As both forces electrostatic and van der Waals are nonlinear, and the CNT electrostatic actuation is given by AC voltage, the CNT dynamics is nonlinear parametric. The method of multiple scales is used to investigate the system under soft excitations and/or weakly nonlinearities. The frequency-amplitude and frequency-phase behavior are found in the case of primary resonance. The CNT bio-sensor is to be used for mass detection applications.


Author(s):  
Dumitru I. Caruntu ◽  
Julio Beatriz

Abstract This paper investigates the voltage-amplitude response of superharmonic resonance of fourth order of electrostatically actuated clamped MEMS circular plates. The system consists of flexible MEMS circular plate parallel to a ground plate. Hard excitations (voltage large enough) and AC voltage of frequency near one eight of the natural frequency of the MEMS plate resonator lead it into a superharmonic resonance. Hard excitations produce actuation forces large enough to produce resonance away from the primary resonance zone. There is no DC component in the voltage applied. The partial differential equation of motion describing the behavior of the system is solved using two modes of vibration reduced order model (ROM). This model is solved through a continuation and bifurcation analysis using the software package AUTO 07P which produces the voltage-amplitude response (bifurcation diagram of the system, and a numerical integration of the system of differential equations using Matlab that produces time responses of the system. Numerical simulations are conducted for a typical MEMS silicon circular plate resonator. For this resonator the quantum dynamics effects such as Casimir effect or Van der Waals effect are negligible. Both methods show agreement for the entire range of voltage values and amplitudes. The response consists of an increase of the amplitude with the increase of voltage, except around the value of 4 of the dimensionless voltage where the resonance shows two saddle-node bifurcations and a peak amplitude about ten times larger than the amplitudes before and after the dimensionless voltage of 4. The softening effect is present. The pull-in voltage is reached at large values of the dimensionless voltage, namely about 14. The effects of damping and frequency on the voltage response are reported. As the damping increases, the peak amplitude decreases for the resonance. However, the pull-in voltage is not affected. As the frequency increases, the resonance zone is shifted to lower voltage values and lower peak amplitudes. However, the pull-in voltage and the behavior for large voltage values are not affected.


Sign in / Sign up

Export Citation Format

Share Document