ROM of Superharmonic Resonance of Fourth Order of Electrostatically Actuated Clamped MEMS Circular Plates: Voltage Response

Author(s):  
Dumitru I. Caruntu ◽  
Julio Beatriz

Abstract This paper investigates the voltage-amplitude response of superharmonic resonance of fourth order of electrostatically actuated clamped MEMS circular plates. The system consists of flexible MEMS circular plate parallel to a ground plate. Hard excitations (voltage large enough) and AC voltage of frequency near one eight of the natural frequency of the MEMS plate resonator lead it into a superharmonic resonance. Hard excitations produce actuation forces large enough to produce resonance away from the primary resonance zone. There is no DC component in the voltage applied. The partial differential equation of motion describing the behavior of the system is solved using two modes of vibration reduced order model (ROM). This model is solved through a continuation and bifurcation analysis using the software package AUTO 07P which produces the voltage-amplitude response (bifurcation diagram of the system, and a numerical integration of the system of differential equations using Matlab that produces time responses of the system. Numerical simulations are conducted for a typical MEMS silicon circular plate resonator. For this resonator the quantum dynamics effects such as Casimir effect or Van der Waals effect are negligible. Both methods show agreement for the entire range of voltage values and amplitudes. The response consists of an increase of the amplitude with the increase of voltage, except around the value of 4 of the dimensionless voltage where the resonance shows two saddle-node bifurcations and a peak amplitude about ten times larger than the amplitudes before and after the dimensionless voltage of 4. The softening effect is present. The pull-in voltage is reached at large values of the dimensionless voltage, namely about 14. The effects of damping and frequency on the voltage response are reported. As the damping increases, the peak amplitude decreases for the resonance. However, the pull-in voltage is not affected. As the frequency increases, the resonance zone is shifted to lower voltage values and lower peak amplitudes. However, the pull-in voltage and the behavior for large voltage values are not affected.

Author(s):  
Dumitru I. Caruntu ◽  
Julio Beatriz ◽  
Jonathan Perez

Abstract This paper deals with voltage-amplitude response of superharmonic resonance of second order of electrostatically actuated clamped MEMS circular plates. A flexible MEMS circular plate, parallel to a ground plate, and under AC voltage, constitute the structure under consideration. Hard excitations due to voltage large enough and AC frequency near one fourth of the natural frequency of the MEMS plate resonator lead the MEMS plate into superharmonic resonance of second order. These excitations produce resonance away from the primary resonance zone. No DC component is included in the voltage applied. The equation of motion of the MEMS plate is solved using two modes of vibration reduced order model (ROM), that is then solved through a continuation and bifurcation analysis using the software package AUTO 07P. This predicts the voltage-amplitude response of the electrostatically actuated MEMS plate. Also, a numerical integration of the system of differential equations using Matlab is used to produce time responses of the system. A typical MEMS silicon circular plate resonator is used to conduct numerical simulations. For this resonator the quantum dynamics effects such as Casimir effect are considered. Also, the Method of Multiple Scales (MMS) is used in this work. All methods show agreement for dimensionless voltage values less than 6. The amplitude increases with the increase of voltage, except around the dimensionless voltage value of 4, where the resonance shows two saddle-node bifurcations and a peak amplitude significantly larger than the amplitudes before and after the dimensionless voltage of 4. A light softening effect is present. The pull-in dimensionless voltage is found to be around 16. The effects of damping and frequency on the voltage response are reported. As the damping increases, the peak amplitude decreases. while the pull-in voltage is not affected. As the frequency increases, the peak amplitude is shifted to lower values and lower voltage values. However, the pull-in voltage and the behavior for large voltage values are not affected.


Author(s):  
Dumitru I. Caruntu ◽  
Reynaldo Oyervides

This paper utilizes Reduced Order Model (ROM) method to investigate the voltage-amplitude response of electrostatically actuated M/NEMS clamped circular plates. Soft AC voltage at frequency near half natural frequency of the plate is used. This results in primary resonance of the system. The effects of nonlinearities of the system including pull-in instability on the voltage-amplitude response are investigated. Namely, the effects of detuning frequency, damping, Casimir force, and van der Waals force on the voltage response of clamped circular plates are reported. Casimir and van der Waals forces are found to have significant effects on the response of clamped circular plates and must be considered to accurately model and predict the behavior of the system.


Author(s):  
Martin Botello ◽  
Julio Beatriz ◽  
Dumitru I. Caruntu

The superharmonic resonance of second order of microelectro-mechanical system (MEMS) circular plate resonator under electrostatic actuation is investigated. The MEMS resonator consists of a clamped circular plate suspended over a parallel ground plate under an applied Alternating Current (AC) voltage. The AC voltage is characterized as hard excitation, i.e. the magnitude is large enough, and the operating frequency is near one-fourth of the natural frequency of the resonator. Reduced Order Model (ROM), based on the Galerkin procedure, transforms the partial differential equation of motion into a system of ordinary differential equations in time using mode shapes of vibration of the circular plate resonator. Three numerical methods are used to predict the voltage-amplitude response of the MEMS plate resonator. First, the Method of Multiple Scales (MMS) is directly applied to the partial differential equation of motion which is this way transformed into zero-order and first-order problems. Second, ROM using two modes of vibration is numerical integrated using MATLAB to predict time responses, and third, the AUTO 07P software for continuation and bifurcation to predict the voltage-amplitude response. The nonlinear behavior (i.e. bifurcation and pull-in instability) of the system is attributed to the inclusion of viscous air damping and electrostatic force in the model. The influences of various parameters (i.e. detuning frequency and damping) are also investigated in this work.


Author(s):  
Dumitru I. Caruntu ◽  
Martin A. Botello ◽  
Christian A. Reyes ◽  
Julio S. Beatriz

This paper investigates the voltage–amplitude response of superharmonic resonance of second order (order two) of alternating current (AC) electrostatically actuated microelectromechanical system (MEMS) cantilever resonators. The resonators consist of a cantilever parallel to a ground plate and under voltage that produces hard excitations. AC frequency is near one-fourth of the natural frequency of the cantilever. The electrostatic force includes fringe effect. Two kinds of models, namely reduced-order models (ROMs), and boundary value problem (BVP) model, are developed. Methods used to solve these models are (1) method of multiple scales (MMS) for ROM using one mode of vibration, (2) continuation and bifurcation analysis for ROMs with several modes of vibration, (3) numerical integration for ROM with several modes of vibration, and (4) numerical integration for BVP model. The voltage–amplitude response shows a softening effect and three saddle-node bifurcation points. The first two bifurcation points occur at low voltage and amplitudes of 0.2 and 0.56 of the gap. The third bifurcation point occurs at higher voltage, called pull-in voltage, and amplitude of 0.44 of the gap. Pull-in occurs, (1) for voltage larger than the pull-in voltage regardless of the initial amplitude and (2) for voltage values lower than the pull-in voltage and large initial amplitudes. Pull-in does not occur at relatively small voltages and small initial amplitudes. First two bifurcation points vanish as damping increases. All bifurcation points are shifted to lower voltages as fringe increases. Pull-in voltage is not affected by the damping or detuning frequency.


Author(s):  
Julio Beatriz ◽  
Dumitru I. Caruntu

Abstract This paper investigates the frequency-amplitude response of electrostatically actuated Bio-MEMS clamped circular plates under superharmonic resonance of fourth order. The system consists of an elastic circular plate parallel to a ground plate. An AC voltage between the two plates will lead to vibrations of the elastic plate. Method of Multiple Scales, and Reduced Order Model with two modes of vibration are the two methods used in this work. The two methods show similar amplitude-frequency response, with an agreement in the low amplitudes. The difference between the two methods can be seen for larger amplitudes. The effects of voltage and damping on the amplitude-frequency response are reported. The steady-state amplitudes in the resonant zone increase with the increase of voltage and with the decrease of damping.


Author(s):  
Dumitru I. Caruntu ◽  
Reynaldo Oyervides ◽  
Valeria Garcia

This paper deals with electrostatically actuated MEMS plates. The model consists of a flexible MEMS plate above a parallel ground plate. An AC voltage of frequency near natural frequency of the plate provides the electrostatic force that actuates the flexible MEMS plate. This leads to parametric resonance. The effect of Casimir and/or van der Waals forces on the voltage-amplitude response of the plate is investigated.


Author(s):  
Dumitru I. Caruntu ◽  
Reynaldo Oyervides

This paper investigates the voltage-amplitude response of soft AC electrostatically actuated M/NEMS clamped circular plates. AC frequency is near half natural frequency of the plate. This results in primary resonance. The system is analytically modeled using the Method of Multiple Scales (MMS). The system is assumed weakly nonlinear. The behavior of the system including pull-in instability as the AC voltage is swept up and down while the excitation frequency is constant is reported. The effects of detuning frequency, damping, Casimir force, and van der Waals force are reported as well.


Author(s):  
Dumitru I. Caruntu ◽  
Christopher Reyes

Abstract This paper deals with the amplitude voltage response of electrostatically actuated MEMS cantilever resonators undergoing superharmonic resonance of fourth order. This can be used as sensing mechanism. The system consists of a MEMS cantilever beam held parallel to a ground plate with an applied voltage of alternating current (AC) causing the cantilever to vibrate. The driving frequency of the excitation voltage is near one eighth of the first natural frequency of the cantilever. This causes the cantilever to experience superharmonic resonance of order four. In order for this resonance to occur hard excitations are required wherein the magnitude of the excitation voltage must be large enough. This work models the electrostatic force to include fringe effect. The fringe effect is modeled using Palmer’s formula. Reduced order models (ROMs) are used in this work. The methods used to solve these models are 1) the method of multiple scales (MMS), 2) homotopy analysis method (HAM), and 3) numerical integration for ROM with 2 modes of vibration. The amplitude voltage response shows a softening. The response consists of three branches: two stable and one unstable. As the voltage is increased the system is stable until the first saddle-node bifurcation point is reached. Here the system experiences instability and it jumps to higher amplitude on the stable branch. As the voltage is swept down the system is stable until the second saddle-node bifurcation point in high amplitudes is reached and the system jumps down to lower amplitudes on the first stable branch. This is the biosensing mechanism proposed in this work. All three methods show excellent agreement with one another for detuning frequency values up to σ = −0.025. As the magnitude of the detuning frequency increases the MMS and HAM begin to disagree with the time responses obtained from the numerical integration of the ROM with 2 modes of vibration (or terms). This demonstrates the limitations of MMS and HAM to accurately predict the behavior for hard excitations where the voltage is very high.


Sign in / Sign up

Export Citation Format

Share Document