Biomechanical Behaviors in Three Types of Spinal Cord Injury Mechanisms

2016 ◽  
Vol 138 (8) ◽  
Author(s):  
Batbayar Khuyagbaatar ◽  
Kyungsoo Kim ◽  
Won Man Park ◽  
Yoon Hyuk Kim

Clinically, spinal cord injuries (SCIs) are radiographically evaluated and diagnosed from plain radiographs, computed tomography (CT), and magnetic resonance imaging. However, it is difficult to conclude that radiographic evaluation of SCI can directly explain the fundamental mechanism of spinal cord damage. The von-Mises stress and maximum principal strain are directly associated with neurological damage in the spinal cord from a biomechanical viewpoint. In this study, the von-Mises stress and maximum principal strain in the spinal cord as well as the cord cross-sectional area (CSA) were analyzed under various magnitudes for contusion, dislocation, and distraction SCI mechanisms, using a finite-element (FE) model of the cervical spine with spinal cord including white matter, gray matter, dura mater with nerve roots, and cerebrospinal fluid (CSF). A regression analysis was performed to find correlation between peak von-Mises stress/peak maximum principal strain at the cross section of the highest reduction in CSA and corresponding reduction in CSA of the cord. Dislocation and contusion showed greater peak stress and strain values in the cord than distraction. The substantial increases in von-Mises stress as well as CSA reduction similar to or more than 30% were produced at a 60% contusion and a 60% dislocation, while the maximum principal strain was gradually increased as injury severity elevated. In addition, the CSA reduction had a strong correlation with peak von-Mises stress/peak maximum principal strain for the three injury mechanisms, which might be fundamental information in elucidating the relationship between radiographic and mechanical parameters related to SCI.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Fan Xue ◽  
Zujiang Chen ◽  
Han Yang ◽  
Taijun Chen ◽  
Yikai Li

Abstract Background Little information is available concerning the biomechanism involved in the spinal cord injury after cervical rotatory manipulation (CRM). The primary purpose of this study was to explore the biomechanical and kinematic effects of CRM on a healthy spinal cord. Methods A finite element (FE) model of the basilaris cranii, C1–C7 vertebral bodies, nerve root complex and vertebral canal contents was constructed and validated against in vivo and in vitro published data. The FE model simulated CRM in the flexion, extension and neutral positions. The stress distribution, forma and relative position of the spinal cord were observed. Results Lower von Mises stress was observed on the spinal cord after CRM in the flexion position. The spinal cord in CRM in the flexion and neutral positions had a lower sagittal diameter and cross-sectional area. In addition, the spinal cord was anteriorly positioned after CRM in the flexion position, while the spinal cord was posteriorly positioned after CRM in the extension and neutral positions. Conclusion CRM in the flexion position is less likely to injure the spinal cord, but caution is warranted when posterior vertebral osteophytes or disc herniations exist.


Author(s):  
Marie-Helene Beausejour ◽  
Eric Wagnac ◽  
Pierre-Jean Arnoux ◽  
Jean-Marc Mac-Thiong ◽  
Yvan Petit

Abstract Flexion-distraction injuries frequently cause traumatic cervical spinal cord injury (SCI). Post-traumatic instability can cause aggravation of the secondary SCI during patient's care. However, there is little information on how the pattern of disco-ligamentous injury affects the SCI severity and mechanism. This study objective was to analyze how different flexion-distraction disco-ligamentous injuries affect the SCI mechanisms during post-traumatic flexion and extension. A cervical spine finite element model including the spinal cord was used and different combinations of partial or complete intervertebral disc (IVD) rupture and disruption of various posterior ligaments were modeled at C4-C5, C5-C6 or C6-C7. In flexion, complete IVD rupture combined with posterior ligamentous complex rupture was the most severe injury leading to the most extreme von Mises stress (47 to 66 kPa), principal strains p1 (0.32 to 0.41 in white matter) and p3 (-0.78 to -0.96 in white matter) in the spinal cord and to the most important spinal cord compression (35 to 48 %). The main post-trauma SCI mechanism was identified as compression of the anterior white matter at the injured level combined with distraction of the posterior spinal cord during flexion. There was also a concentration of the maximum stresses in the gray matter after injury. Finally, in extension, the injuries tested had little impact on the spinal cord. The capsular ligament was the most important structure in protecting the spinal cord. Its status should be carefully examined during patient's management.


2014 ◽  
Vol 136 (11) ◽  
Author(s):  
Jacob T. Munro ◽  
Justin W. Fernandez ◽  
James S. Millar ◽  
Cameron G. Walker ◽  
Donald W. Howie ◽  
...  

Periprosthetic osteolysis in the retroacetabular region with cancellous bone loss is a recognized phenomenon in the long-term follow-up of total hip replacement. The effects on load transfer in the presence of defects are less well known. A validated, patient-specific, 3D finite element (FE) model of the pelvis was used to assess changes in load transfer associated with periprosthetic osteolysis adjacent to a cementless total hip arthroplasty (THA) component. The presence of a cancellous defect significantly increased (p < 0.05) von Mises stress in the cortical bone of the pelvis during walking and a fall onto the side. At loads consistent with single leg stance, this was still less than the predicted yield stress for cortical bone. During higher loads associated with a fall onto the side, highest stress concentrations occurred in the superior and inferior pubic rami and in the anterior column of the acetabulum with larger cancellous defects.


2012 ◽  
Vol 29 (8) ◽  
pp. 1574-1585 ◽  
Author(s):  
Colin M. Russell ◽  
Anthony M. Choo ◽  
Wolfram Tetzlaff ◽  
Tae-Eun Chung ◽  
Thomas R. Oxland

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
WeiLun Yu ◽  
XiaoGang Wu ◽  
HaiPeng Cen ◽  
Yuan Guo ◽  
ChaoXin Li ◽  
...  

Abstract Background Bone is a hierarchically structured composite material, and different hierarchical levels exhibit diverse material properties and functions. The stress and strain distribution and fluid flow in bone play an important role in the realization of mechanotransduction and bone remodeling. Methods To investigate the mechanotransduction and fluid behaviors in loaded bone, a multiscale method was developed. Based on poroelastic theory, we established the theoretical and FE model of a segment bone to provide basis for researching more complex bone model. The COMSOL Multiphysics software was used to establish different scales of bone models, and the properties of mechanical and fluid behaviors in each scale were investigated. Results FE results correlated very well with analytical in macroscopic scale, and the results for the mesoscopic models were about less than 2% different compared to that in the macro–mesoscale models, verifying the correctness of the modeling. In macro–mesoscale, results demonstrated that variations in fluid pressure (FP), fluid velocity (FV), von Mises stress (VMS), and maximum principal strain (MPS) in the position of endosteum, periosteum, osteon, and interstitial bone and these variations can be considerable (up to 10, 8, 4 and 3.5 times difference in maximum FP, FV, VMS, and MPS between the highest and the lowest regions, respectively). With the changing of Young’s modulus (E) in each osteon lamella, the strain and stress concentration occurred in different positions and given rise to microscale spatial variations in the fluid pressure field. The heterogeneous distribution of lacunar–canalicular permeability (klcp) in each osteon lamella had various influence on the FP and FV, but had little effect on VMS and MPS. Conclusion Based on the idealized model presented in this article, the presence of endosteum and periosteum has an important influence on the fluid flow in bone. With the hypothetical parameter values in osteon lamellae, the bone material parameters have effect on the propagation of stress and fluid flow in bone. The model can also incorporate alternative material parameters obtained from different individuals. The suggested method is expected to provide dependable biological information for better understanding the bone mechanotransduction and signal transduction.


2015 ◽  
Vol 15 (03) ◽  
pp. 1550025 ◽  
Author(s):  
CHIEN-YU LIN ◽  
WENG-PIN CHEN ◽  
PO-LIANG LAI ◽  
SHIH-YOUENG CHUANG ◽  
DA-TONG JU ◽  
...  

Vertebroplasty is commonly used to treat vertebral wedge fractures (VWFs). However, differing degrees of vertebral height restoration (VHR) have been reported after vertebroplasty, and little is known about how grades (steepness) of VWF deformities affect loadings on the fractured and adjacent unfractured vertebrae. Therefore, the goal of this study was to create a non-linear finite element (FE) model of the T10–L2 thoracolumbar segments. With this model, we aimed to evaluate the biomechanical outcomes of three different collapse models (25%, 50%, and 75%) at the T12 vertebra before and after cement augmentation (CA) and with and without VHR. In these VWF simulations, the forces of the erector spinae, the intradiscal pressure, and the maximum von Mises stresses in the endplates and vertebral bodies increased as vertebral deformation increased. Performing CA alone, without restoring vertebral height for the fractured vertebra, did not change the stiffness of multiple spinal segments or the pressures on the adjacent disc, but it did decrease stresses on the endplates and the vertebral bone. A 10% restoration of vertebral height after CA reduced the maximum von Mises stress in the endplates and bone structures more than when CA did not restore vertebral height (no VHR). These results suggest that achieving partial VHR during vertebroplasty may help prevent postvertebroplasty fractures in the fractured and adjacent vertebrae.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Neelambar Kaipatur ◽  
Yuchin Wu ◽  
Samer Adeeb ◽  
Thomas Stevenson ◽  
Paul Major ◽  
...  

The aim of this animal study was to develop a model of orthodontic tooth movement using a microimplant as a TSAD in rodents. A finite element model of the TSAD in alveolar bone was built usingμCT images of rat maxilla to determine the von Mises stresses and displacement in the alveolar bone surrounding the TSAD. Forin vivovalidation of the FE model, Sprague-Dawley rats (n=25) were used and a Stryker 1.2 × 3 mm microimplant was inserted in the right maxilla and used to protract the right first permanent molar using a NiTi closed coil spring. Tooth movement measurements were taken at baseline, 4 and 8 weeks. At 8 weeks, animals were euthanized and tissues were analyzed by histology and EPMA. FE modeling showed maximum von Mises stress of 45 Mpa near the apex of TSAD but the average von Mises stress was under 25 Mpa. Appreciable tooth movement of 0.62 ± 0.04 mm at 4 weeks and 1.99 ± 0.14 mm at 8 weeks was obtained. Histological and EPMA results demonstrated no active bone remodeling around the TSAD at 8 weeks depicting good secondary stability. This study provided evidence that protracted tooth movement is achieved in small animals using TSADs.


Sign in / Sign up

Export Citation Format

Share Document