Altered Load Transfer in the Pelvis in the Presence of Periprosthetic Osteolysis

2014 ◽  
Vol 136 (11) ◽  
Author(s):  
Jacob T. Munro ◽  
Justin W. Fernandez ◽  
James S. Millar ◽  
Cameron G. Walker ◽  
Donald W. Howie ◽  
...  

Periprosthetic osteolysis in the retroacetabular region with cancellous bone loss is a recognized phenomenon in the long-term follow-up of total hip replacement. The effects on load transfer in the presence of defects are less well known. A validated, patient-specific, 3D finite element (FE) model of the pelvis was used to assess changes in load transfer associated with periprosthetic osteolysis adjacent to a cementless total hip arthroplasty (THA) component. The presence of a cancellous defect significantly increased (p < 0.05) von Mises stress in the cortical bone of the pelvis during walking and a fall onto the side. At loads consistent with single leg stance, this was still less than the predicted yield stress for cortical bone. During higher loads associated with a fall onto the side, highest stress concentrations occurred in the superior and inferior pubic rami and in the anterior column of the acetabulum with larger cancellous defects.

2015 ◽  
Vol 15 (03) ◽  
pp. 1550025 ◽  
Author(s):  
CHIEN-YU LIN ◽  
WENG-PIN CHEN ◽  
PO-LIANG LAI ◽  
SHIH-YOUENG CHUANG ◽  
DA-TONG JU ◽  
...  

Vertebroplasty is commonly used to treat vertebral wedge fractures (VWFs). However, differing degrees of vertebral height restoration (VHR) have been reported after vertebroplasty, and little is known about how grades (steepness) of VWF deformities affect loadings on the fractured and adjacent unfractured vertebrae. Therefore, the goal of this study was to create a non-linear finite element (FE) model of the T10–L2 thoracolumbar segments. With this model, we aimed to evaluate the biomechanical outcomes of three different collapse models (25%, 50%, and 75%) at the T12 vertebra before and after cement augmentation (CA) and with and without VHR. In these VWF simulations, the forces of the erector spinae, the intradiscal pressure, and the maximum von Mises stresses in the endplates and vertebral bodies increased as vertebral deformation increased. Performing CA alone, without restoring vertebral height for the fractured vertebra, did not change the stiffness of multiple spinal segments or the pressures on the adjacent disc, but it did decrease stresses on the endplates and the vertebral bone. A 10% restoration of vertebral height after CA reduced the maximum von Mises stress in the endplates and bone structures more than when CA did not restore vertebral height (no VHR). These results suggest that achieving partial VHR during vertebroplasty may help prevent postvertebroplasty fractures in the fractured and adjacent vertebrae.


2017 ◽  
Vol 13 ◽  
pp. 97
Author(s):  
Luboš Řehounek ◽  
František Denk ◽  
Aleš Jíra

A newly developed reference dental implant specimen type was subjected to numerical simulations of osseointegration. The goal of these tests was to optimize the geometry of the implant so as to reduce local stress concentrations and provide a better flow of stress through the whole implant body. Conditions for osseointegration were considered when evaluating the anchoring system of the implant in regard to its placement in the human cancellous and cortical bone. Numerical simulations showed that stress concentrations occur mostly in the upper cylindrical part of the implant. By increasing the width of this cylindrical part, we were able to reduce the maximum values of von-Mises stress by 20 %.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Niksa Mohammadi Bagheri ◽  
Mahmoud Kadkhodaei ◽  
Shiva Pirhadi ◽  
Peiman Mosaddegh

AbstractThe implementation of intracorneal ring segments (ICRS) is one of the successfully applied refractive operations for the treatment of keratoconus (kc) progression. The different selection of ICRS types along with the surgical implementation techniques can significantly affect surgical outcomes. Thus, this study aimed to investigate the influence of ICRS implementation techniques and design on the postoperative biomechanical state and keratometry results. The clinical data of three patients with different stages and patterns of keratoconus were assessed to develop a three-dimensional (3D) patient-specific finite-element model (FEM) of the keratoconic cornea. For each patient, the exact surgery procedure definitions were interpreted in the step-by-step FEM. Then, seven surgical scenarios, including different ICRS designs (complete and incomplete segment), with two surgical implementation methods (tunnel incision and lamellar pocket cut), were simulated. The pre- and postoperative predicted results of FEM were validated with the corresponding clinical data. For the pre- and postoperative results, the average error of 0.4% and 3.7% for the mean keratometry value ($$\text {K}_{\text{mean}}$$ K mean ) were predicted. Furthermore, the difference in induced flattening effects was negligible for three ICRS types (KeraRing segment with arc-length of 355, 320, and two separate 160) of equal thickness. In contrast, the single and double progressive thickness of KeraRing 160 caused a significantly lower flattening effect compared to the same type with constant thickness. The observations indicated that the greater the segment thickness and arc-length, the lower the induced mean keratometry values. While the application of the tunnel incision method resulted in a lower $$\text {K}_{\text{mean}}$$ K mean value for moderate and advanced KC, the induced maximum Von Mises stress on the postoperative cornea exceeded the induced maximum stress on the cornea more than two to five times compared to the pocket incision and the preoperative state of the cornea. In particular, an asymmetric regional Von Mises stress on the corneal surface was generated with a progressive ICRS thickness. These findings could be an early biomechanical sign for a later corneal instability and ICRS migration. The developed methodology provided a platform to personalize ICRS refractive surgery with regard to the patient’s keratoconus stage in order to facilitate the efficiency and biomechanical stability of the surgery.


Author(s):  
Mostafa Omran Hussein ◽  
Mohammed Suliman Alruthea

Abstract Objective The purpose of this study was to compare methods used for calculating heterogeneous patient-specific bone properties used in finite element analysis (FEA), in the field of implant dentistry, with the method based on homogenous bone properties. Materials and Methods In this study, three-dimensional (3D) computed tomography data of an edentulous patient were processed to create a finite element model, and five identical 3D implant models were created and distributed throughout the dental arch. Based on the calculation methods used for bone material assignment, four groups—groups I to IV—were defined. Groups I to III relied on heterogeneous bone property assignment based on different equations, whereas group IV relied on homogenous bone properties. Finally, 150 N vertical and 60-degree-inclined forces were applied at the top of the implant abutments to calculate the von Mises stress and strain. Results Groups I and II presented the highest stress and strain values, respectively. Based on the implant location, differences were observed between the stress values of group I, II, and III compared with group IV; however, no clear order was noted. Accordingly, variable von Mises stress and strain reactions at the bone–implant interface were observed among the heterogeneous bone property groups when compared with the homogenous property group results at the same implant positions. Conclusion Although the use of heterogeneous bone properties as material assignments in FEA studies seem promising for patient-specific analysis, the variations between their results raise doubts about their reliability. The results were influenced by implants’ locations leading to misleading clinical simulations.


2021 ◽  
Vol 11 (18) ◽  
pp. 8629
Author(s):  
Li-Ren Chang ◽  
Ya-Pei Hou ◽  
Ting-Sheng Lin

The effectiveness of a single four-hole plate (S4HP), perpendicularly oriented four-hole and two-hole plate (Per4H2HP), and perpendicularly oriented double two-hole plate (PerD2HP) for the fixation of a mandibular fracture was studied. A finite element analysis of the mandibular symphysis fractures treated with S4HP, Per4H2HP, and PerD2HP was performed. All surface nodes were fixed in the mandibular condyle region and occlusal muscle forces were applied. The maximal von Mises stress (MaxVMS) values of the plates, screws and screw holes were investigated. The displacement of the fracture site on the lower border of the mandibular symphysis was recorded. The displacement on the lower border of the fracture sites in the S4HP group was greater than that in the Per4H2HP group and the PerD2HP group. There was no eversion at the fracture site among all groups. Both the S4HP and Per4H2HP groups showed stress concentrations on the screws close to the fracture site. The MaxVMS increased when the number of screw holes on the mandibular anterior lower border decreased. The displacement of the fracture site and eversion with Per4H2HP and PerD2HP were far lower than those with S4HP. PerD2HP is a stable and green fixation technique for mandibular symphysis fractures.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
WeiLun Yu ◽  
XiaoGang Wu ◽  
HaiPeng Cen ◽  
Yuan Guo ◽  
ChaoXin Li ◽  
...  

Abstract Background Bone is a hierarchically structured composite material, and different hierarchical levels exhibit diverse material properties and functions. The stress and strain distribution and fluid flow in bone play an important role in the realization of mechanotransduction and bone remodeling. Methods To investigate the mechanotransduction and fluid behaviors in loaded bone, a multiscale method was developed. Based on poroelastic theory, we established the theoretical and FE model of a segment bone to provide basis for researching more complex bone model. The COMSOL Multiphysics software was used to establish different scales of bone models, and the properties of mechanical and fluid behaviors in each scale were investigated. Results FE results correlated very well with analytical in macroscopic scale, and the results for the mesoscopic models were about less than 2% different compared to that in the macro–mesoscale models, verifying the correctness of the modeling. In macro–mesoscale, results demonstrated that variations in fluid pressure (FP), fluid velocity (FV), von Mises stress (VMS), and maximum principal strain (MPS) in the position of endosteum, periosteum, osteon, and interstitial bone and these variations can be considerable (up to 10, 8, 4 and 3.5 times difference in maximum FP, FV, VMS, and MPS between the highest and the lowest regions, respectively). With the changing of Young’s modulus (E) in each osteon lamella, the strain and stress concentration occurred in different positions and given rise to microscale spatial variations in the fluid pressure field. The heterogeneous distribution of lacunar–canalicular permeability (klcp) in each osteon lamella had various influence on the FP and FV, but had little effect on VMS and MPS. Conclusion Based on the idealized model presented in this article, the presence of endosteum and periosteum has an important influence on the fluid flow in bone. With the hypothetical parameter values in osteon lamellae, the bone material parameters have effect on the propagation of stress and fluid flow in bone. The model can also incorporate alternative material parameters obtained from different individuals. The suggested method is expected to provide dependable biological information for better understanding the bone mechanotransduction and signal transduction.


2012 ◽  
Vol 83 (4) ◽  
pp. 667-673 ◽  
Author(s):  
Jihye Lee ◽  
Ji Young Kim ◽  
Yoon Jeong Choi ◽  
Kyung-Ho Kim ◽  
Chooryung J. Chung

ABSTRACT Objectives: To evaluate the influence of placement angle and direction of orthopedic force application on the stability of miniscrews. Materials and Methods: Finite element analysis was performed using miniscrews inserted into supporting bone at angles of 90°, 60°, and 30° (P90°, P60°, and P30°). An orthopedic heavy force of 800 gf was applied to the heads of the miniscrews in four upward (U0°, U30°, U60°, U90°) or lateral (L0°, L30°, L60°, L90°) directions. In addition, pull-out strength of the miniscrews was measured with various force directions and cortical bone thicknesses. Results: Miniscrews with a placement angle of 30° (P30°) and 60° (P60°) showed a significant increase in maximum von Mises stress following the increase in lateral force vectors (U30°, U60°, U90°) compared to those with a placement angle of 90° (P90°). In accordance, the pull-out strength was higher with the axial upward force when compared to the upward force with lateral vectors. Maximum von Mises stress and displacement of the miniscrew increased as the angle of lateral force increased (L30°, L60°, L90°). However, a more dramatic increase in maximum von Mises stress was noted in P30° than in P60° and P90°. Conclusion: Placement of the miniscrew perpendicular to the cortical bone is advantageous in terms of biomechanical stability. Placement angles of less than 60° can reduce the stability of miniscrews when orthopedic forces are applied in various directions.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1708 ◽  
Author(s):  
Maciej Zarow ◽  
Mirco Vadini ◽  
Agnieszka Chojnacka-Brozek ◽  
Katarzyna Szczeklik ◽  
Grzegorz Milewski ◽  
...  

By means of a finite element method (FEM), the present study evaluated the effect of fiber post (FP) placement on the stress distribution occurring in endodontically treated upper first premolars (UFPs) with mesial–occlusal–distal (MOD) nanohybrid composite restorations under subcritical static load. FEM models were created to simulate four different clinical situations involving endodontically treated UFPs with MOD cavities restored with one of the following: composite resin; composite and one FP in the palatal root; composite and one FP in the buccal root; or composite and two FPs. As control, the model of an intact UFP was included. A simulated load of 150 N was applied. Stress distribution was observed on each model surface, on the mid buccal–palatal plane, and on two horizontal planes (at cervical and root-furcation levels); the maximum Von Mises stress values were calculated. All analyses were replicated three times, using the mechanical parameters from three different nanohybrid resin composite restorative materials. In the presence of FPs, the maximum stress values recorded on dentin (in cervical and root-furcation areas) appeared slightly reduced, compared to the endodontically treated tooth restored with no post; in the same areas, the overall Von Mises maps revealed more favorable stress distributions. FPs in maxillary premolars with MOD cavities can lead to a positive redistribution of potentially dangerous stress concentrations away from the cervical and the root-furcation dentin.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Neelambar Kaipatur ◽  
Yuchin Wu ◽  
Samer Adeeb ◽  
Thomas Stevenson ◽  
Paul Major ◽  
...  

The aim of this animal study was to develop a model of orthodontic tooth movement using a microimplant as a TSAD in rodents. A finite element model of the TSAD in alveolar bone was built usingμCT images of rat maxilla to determine the von Mises stresses and displacement in the alveolar bone surrounding the TSAD. Forin vivovalidation of the FE model, Sprague-Dawley rats (n=25) were used and a Stryker 1.2 × 3 mm microimplant was inserted in the right maxilla and used to protract the right first permanent molar using a NiTi closed coil spring. Tooth movement measurements were taken at baseline, 4 and 8 weeks. At 8 weeks, animals were euthanized and tissues were analyzed by histology and EPMA. FE modeling showed maximum von Mises stress of 45 Mpa near the apex of TSAD but the average von Mises stress was under 25 Mpa. Appreciable tooth movement of 0.62 ± 0.04 mm at 4 weeks and 1.99 ± 0.14 mm at 8 weeks was obtained. Histological and EPMA results demonstrated no active bone remodeling around the TSAD at 8 weeks depicting good secondary stability. This study provided evidence that protracted tooth movement is achieved in small animals using TSADs.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Daogang Lu ◽  
Yu Liu ◽  
Xiaojia Zeng

Huge water storage tank on the top of many buildings may affect the safety of the structure caused by fluid-structure interaction (FSI) under the earthquake. AP1000 passive containment cooling system water storage tank (PCCWST) placed at the top of shield building is a key component to ensure the safety of nuclear facilities. Under seismic loading, water will impact the wall of PCCWST, which may pose a threat to the integrity of the shield building. In the present study, an FE model of AP1000 shield building is built for the modal and transient seismic analysis considering the FSI. Six different water levels in PCCWST were discussed by comparing the modal frequency, seismic acceleration response, and von Mises stress distribution. The results show the maximum von Mises stress emerges at the joint of shield building roof and water around the air inlet. However, the maximum von Mises stress is below the yield strength of reinforced concrete. The results may provide a reference for design of the AP1000 and CAP1400 in the future.


Sign in / Sign up

Export Citation Format

Share Document